Correcting MM estimates for "fat" data sets
- Autores
- Maronna, Ricardo Antonio; Yohai, Victor Jaime
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Regression MM estimates require the estimation of the error scale, and the determination of a constant that controls the efficiency. These two steps are based on the asymptotic results that are derived assuming that the number of predictors p remains fixed while the number of observations n tends to infinity, which means assuming that the ratio p/n is "small". However, many high-dimensional data sets have a "large" value of p/n (say, ≥0.2). It is shown that the standard asymptotic results do not hold if p/n is large; namely that (a) the estimated scale underestimates the true error scale, and (b) that even if the scale is correctly estimated, the actual efficiency can be much lower than the nominal one. To overcome these drawbacks simple corrections for the scale and for the efficiency controlling constant are proposed, and it is demonstrated that these corrections improve on the estimate's performance under both normal and contaminated data.
Fil: Maronna, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
MM estimators
M-scale
HIgh-dimensional data - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98688
Ver los metadatos del registro completo
id |
CONICETDig_79a59df4cd3343cfb05d5a0329d3a7af |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98688 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Correcting MM estimates for "fat" data setsMaronna, Ricardo AntonioYohai, Victor JaimeMM estimatorsM-scaleHIgh-dimensional datahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Regression MM estimates require the estimation of the error scale, and the determination of a constant that controls the efficiency. These two steps are based on the asymptotic results that are derived assuming that the number of predictors p remains fixed while the number of observations n tends to infinity, which means assuming that the ratio p/n is "small". However, many high-dimensional data sets have a "large" value of p/n (say, ≥0.2). It is shown that the standard asymptotic results do not hold if p/n is large; namely that (a) the estimated scale underestimates the true error scale, and (b) that even if the scale is correctly estimated, the actual efficiency can be much lower than the nominal one. To overcome these drawbacks simple corrections for the scale and for the efficiency controlling constant are proposed, and it is demonstrated that these corrections improve on the estimate's performance under both normal and contaminated data.Fil: Maronna, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98688Maronna, Ricardo Antonio; Yohai, Victor Jaime; Correcting MM estimates for "fat" data sets; Elsevier Science; Computational Statistics and Data Analysis; 54; 12; 12-2010; 3168-31730167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947309003314info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2009.09.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:37Zoai:ri.conicet.gov.ar:11336/98688instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:37.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Correcting MM estimates for "fat" data sets |
title |
Correcting MM estimates for "fat" data sets |
spellingShingle |
Correcting MM estimates for "fat" data sets Maronna, Ricardo Antonio MM estimators M-scale HIgh-dimensional data |
title_short |
Correcting MM estimates for "fat" data sets |
title_full |
Correcting MM estimates for "fat" data sets |
title_fullStr |
Correcting MM estimates for "fat" data sets |
title_full_unstemmed |
Correcting MM estimates for "fat" data sets |
title_sort |
Correcting MM estimates for "fat" data sets |
dc.creator.none.fl_str_mv |
Maronna, Ricardo Antonio Yohai, Victor Jaime |
author |
Maronna, Ricardo Antonio |
author_facet |
Maronna, Ricardo Antonio Yohai, Victor Jaime |
author_role |
author |
author2 |
Yohai, Victor Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
MM estimators M-scale HIgh-dimensional data |
topic |
MM estimators M-scale HIgh-dimensional data |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Regression MM estimates require the estimation of the error scale, and the determination of a constant that controls the efficiency. These two steps are based on the asymptotic results that are derived assuming that the number of predictors p remains fixed while the number of observations n tends to infinity, which means assuming that the ratio p/n is "small". However, many high-dimensional data sets have a "large" value of p/n (say, ≥0.2). It is shown that the standard asymptotic results do not hold if p/n is large; namely that (a) the estimated scale underestimates the true error scale, and (b) that even if the scale is correctly estimated, the actual efficiency can be much lower than the nominal one. To overcome these drawbacks simple corrections for the scale and for the efficiency controlling constant are proposed, and it is demonstrated that these corrections improve on the estimate's performance under both normal and contaminated data. Fil: Maronna, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Regression MM estimates require the estimation of the error scale, and the determination of a constant that controls the efficiency. These two steps are based on the asymptotic results that are derived assuming that the number of predictors p remains fixed while the number of observations n tends to infinity, which means assuming that the ratio p/n is "small". However, many high-dimensional data sets have a "large" value of p/n (say, ≥0.2). It is shown that the standard asymptotic results do not hold if p/n is large; namely that (a) the estimated scale underestimates the true error scale, and (b) that even if the scale is correctly estimated, the actual efficiency can be much lower than the nominal one. To overcome these drawbacks simple corrections for the scale and for the efficiency controlling constant are proposed, and it is demonstrated that these corrections improve on the estimate's performance under both normal and contaminated data. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98688 Maronna, Ricardo Antonio; Yohai, Victor Jaime; Correcting MM estimates for "fat" data sets; Elsevier Science; Computational Statistics and Data Analysis; 54; 12; 12-2010; 3168-3173 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98688 |
identifier_str_mv |
Maronna, Ricardo Antonio; Yohai, Victor Jaime; Correcting MM estimates for "fat" data sets; Elsevier Science; Computational Statistics and Data Analysis; 54; 12; 12-2010; 3168-3173 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947309003314 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2009.09.015 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613832562966528 |
score |
13.070432 |