Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysi...
- Autores
- Bortolato, Santiago Andres; Olivieri, Alejandro Cesar
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Second-order liquid chromatographic data with multivariate spectral (UV?vis or fluorescence) detection usually show changes in elution time profiles from sample to sample, causing a loss of trilinearity in the data. In order to analyze them with an appropriate model, the latter should permit a given component to have different time profiles in different samples. Two popular models in this regard are multivariate curve resolution-alternating least-squares (MCR-ALS) and parallel factor analysis 2 (PARAFAC2). The conditions to be fulfilled for successful application of the latter model are discussed on the basis of simple chromatographic concepts. An exhaustive analysis of the multivariate calibration models is carried out, employing both simulated and experimental chromatographic data sets. The latter involve the quantitation of benzimidazolic and carbamate pesticides in fruit and juice samples using liquid chromatography with diode array detection, and of polycyclic aromatic hydrocarbons in water samples, in both cases in the presence of potential interferents using liquid chromatography with fluorescence spectral detection, thereby achieving the second-order advantage. The overall results seem to favor MCR-ALS over PARAFAC2, especially in the presence of potential interferents.
Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentina - Materia
-
Parafac2
Mcr-Als
Chromatography
Fluoescence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6017
Ver los metadatos del registro completo
id |
CONICETDig_794c33c4b6af8d712163aed22c82385b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6017 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2Bortolato, Santiago AndresOlivieri, Alejandro CesarParafac2Mcr-AlsChromatographyFluoescencehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Second-order liquid chromatographic data with multivariate spectral (UV?vis or fluorescence) detection usually show changes in elution time profiles from sample to sample, causing a loss of trilinearity in the data. In order to analyze them with an appropriate model, the latter should permit a given component to have different time profiles in different samples. Two popular models in this regard are multivariate curve resolution-alternating least-squares (MCR-ALS) and parallel factor analysis 2 (PARAFAC2). The conditions to be fulfilled for successful application of the latter model are discussed on the basis of simple chromatographic concepts. An exhaustive analysis of the multivariate calibration models is carried out, employing both simulated and experimental chromatographic data sets. The latter involve the quantitation of benzimidazolic and carbamate pesticides in fruit and juice samples using liquid chromatography with diode array detection, and of polycyclic aromatic hydrocarbons in water samples, in both cases in the presence of potential interferents using liquid chromatography with fluorescence spectral detection, thereby achieving the second-order advantage. The overall results seem to favor MCR-ALS over PARAFAC2, especially in the presence of potential interferents.Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaElsevier2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6017Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2; Elsevier; Analytica Chimica Acta; 842; 9-2014; 11-190003-2670enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0003267014008319info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2014.07.007info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:33Zoai:ri.conicet.gov.ar:11336/6017instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:33.348CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
title |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
spellingShingle |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 Bortolato, Santiago Andres Parafac2 Mcr-Als Chromatography Fluoescence |
title_short |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
title_full |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
title_fullStr |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
title_full_unstemmed |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
title_sort |
Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2 |
dc.creator.none.fl_str_mv |
Bortolato, Santiago Andres Olivieri, Alejandro Cesar |
author |
Bortolato, Santiago Andres |
author_facet |
Bortolato, Santiago Andres Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Olivieri, Alejandro Cesar |
author2_role |
author |
dc.subject.none.fl_str_mv |
Parafac2 Mcr-Als Chromatography Fluoescence |
topic |
Parafac2 Mcr-Als Chromatography Fluoescence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Second-order liquid chromatographic data with multivariate spectral (UV?vis or fluorescence) detection usually show changes in elution time profiles from sample to sample, causing a loss of trilinearity in the data. In order to analyze them with an appropriate model, the latter should permit a given component to have different time profiles in different samples. Two popular models in this regard are multivariate curve resolution-alternating least-squares (MCR-ALS) and parallel factor analysis 2 (PARAFAC2). The conditions to be fulfilled for successful application of the latter model are discussed on the basis of simple chromatographic concepts. An exhaustive analysis of the multivariate calibration models is carried out, employing both simulated and experimental chromatographic data sets. The latter involve the quantitation of benzimidazolic and carbamate pesticides in fruit and juice samples using liquid chromatography with diode array detection, and of polycyclic aromatic hydrocarbons in water samples, in both cases in the presence of potential interferents using liquid chromatography with fluorescence spectral detection, thereby achieving the second-order advantage. The overall results seem to favor MCR-ALS over PARAFAC2, especially in the presence of potential interferents. Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentina |
description |
Second-order liquid chromatographic data with multivariate spectral (UV?vis or fluorescence) detection usually show changes in elution time profiles from sample to sample, causing a loss of trilinearity in the data. In order to analyze them with an appropriate model, the latter should permit a given component to have different time profiles in different samples. Two popular models in this regard are multivariate curve resolution-alternating least-squares (MCR-ALS) and parallel factor analysis 2 (PARAFAC2). The conditions to be fulfilled for successful application of the latter model are discussed on the basis of simple chromatographic concepts. An exhaustive analysis of the multivariate calibration models is carried out, employing both simulated and experimental chromatographic data sets. The latter involve the quantitation of benzimidazolic and carbamate pesticides in fruit and juice samples using liquid chromatography with diode array detection, and of polycyclic aromatic hydrocarbons in water samples, in both cases in the presence of potential interferents using liquid chromatography with fluorescence spectral detection, thereby achieving the second-order advantage. The overall results seem to favor MCR-ALS over PARAFAC2, especially in the presence of potential interferents. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6017 Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2; Elsevier; Analytica Chimica Acta; 842; 9-2014; 11-19 0003-2670 |
url |
http://hdl.handle.net/11336/6017 |
identifier_str_mv |
Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2; Elsevier; Analytica Chimica Acta; 842; 9-2014; 11-19 0003-2670 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0003267014008319 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2014.07.007 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269408612843520 |
score |
13.13397 |