Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead

Autores
Sosnik, Alejandro Dario; Chiappetta, Diego Andrés; Carcaboso, Ángel M.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Worldwide, over 40 million people are infected with the Human Immunodeficiency Virus (HIV). The High Activity Antiretroviral Therapy (HAART) combines at least three antiretroviral (ARV) drugs and, for over a decade, has been used to extend the lifespan of the HIV-infected patients. Chronic intake of HAART is mandatory to control HIV infection. The frequent administration of several drugs in relatively high doses is a main cause of patient incompliance and a hurdle toward the fulfillment of the pharmacotherapy. High adherence to HAART does not lead to complete HIV virus elimination from the host. Intracellular and anatomical viral reservoirs are responsible for the perpetuation of the infection. Active transport mechanisms involving proteins of the ATP-binding cassette prevent the penetration of ARV drugs into the brain and may account for the limited bioavailability after oral administration. A new research that addresses from simple organoleptic or technological problems to more complex issues involving the targeting of specific tissues and organs has emerged. With the aim to reduce dosing frequency, to improve the compliance of the existing pharmacotherapy and to target viral reservoirs, the design of drug delivery systems is becoming complementary to new drug discovery. Based on to the common molecular features that characterize the different families of ARV drugs, the present review describes state-of-the-art ARV DDS and thoroughly discusses the challenges in the development of medicines with enhanced biopharmaceutical properties. In addition, a number of specific issues such as pediatric HAART, preventive pharmacotherapy and specific HIV-associated ethical issues are addressed in an integrative manner. Finally, the impact of such novel drug development on the Pharmaceutical Technology field is discussed.
Fil: Sosnik, Alejandro Dario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Chiappetta, Diego Andrés. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Carcaboso, Ángel M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Materia
ANTIRETROVIRAL DRUG TARGETING
DRUG DELIVERY SYSTEMS (DDS)
HIV INFECTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/160881

id CONICETDig_79114d334eb028e9298d9b85d95a2f6a
oai_identifier_str oai:ri.conicet.gov.ar:11336/160881
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing aheadSosnik, Alejandro DarioChiappetta, Diego AndrésCarcaboso, Ángel M.ANTIRETROVIRAL DRUG TARGETINGDRUG DELIVERY SYSTEMS (DDS)HIV INFECTIONhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Worldwide, over 40 million people are infected with the Human Immunodeficiency Virus (HIV). The High Activity Antiretroviral Therapy (HAART) combines at least three antiretroviral (ARV) drugs and, for over a decade, has been used to extend the lifespan of the HIV-infected patients. Chronic intake of HAART is mandatory to control HIV infection. The frequent administration of several drugs in relatively high doses is a main cause of patient incompliance and a hurdle toward the fulfillment of the pharmacotherapy. High adherence to HAART does not lead to complete HIV virus elimination from the host. Intracellular and anatomical viral reservoirs are responsible for the perpetuation of the infection. Active transport mechanisms involving proteins of the ATP-binding cassette prevent the penetration of ARV drugs into the brain and may account for the limited bioavailability after oral administration. A new research that addresses from simple organoleptic or technological problems to more complex issues involving the targeting of specific tissues and organs has emerged. With the aim to reduce dosing frequency, to improve the compliance of the existing pharmacotherapy and to target viral reservoirs, the design of drug delivery systems is becoming complementary to new drug discovery. Based on to the common molecular features that characterize the different families of ARV drugs, the present review describes state-of-the-art ARV DDS and thoroughly discusses the challenges in the development of medicines with enhanced biopharmaceutical properties. In addition, a number of specific issues such as pediatric HAART, preventive pharmacotherapy and specific HIV-associated ethical issues are addressed in an integrative manner. Finally, the impact of such novel drug development on the Pharmaceutical Technology field is discussed.Fil: Sosnik, Alejandro Dario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Chiappetta, Diego Andrés. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Carcaboso, Ángel M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaElsevier Science2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160881Sosnik, Alejandro Dario; Chiappetta, Diego Andrés; Carcaboso, Ángel M.; Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead; Elsevier Science; Journal of Controlled Release; 138; 1; 8-2009; 2-150168-3659CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168365909003010info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jconrel.2009.05.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:12Zoai:ri.conicet.gov.ar:11336/160881instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:12.689CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
title Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
spellingShingle Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
Sosnik, Alejandro Dario
ANTIRETROVIRAL DRUG TARGETING
DRUG DELIVERY SYSTEMS (DDS)
HIV INFECTION
title_short Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
title_full Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
title_fullStr Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
title_full_unstemmed Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
title_sort Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead
dc.creator.none.fl_str_mv Sosnik, Alejandro Dario
Chiappetta, Diego Andrés
Carcaboso, Ángel M.
author Sosnik, Alejandro Dario
author_facet Sosnik, Alejandro Dario
Chiappetta, Diego Andrés
Carcaboso, Ángel M.
author_role author
author2 Chiappetta, Diego Andrés
Carcaboso, Ángel M.
author2_role author
author
dc.subject.none.fl_str_mv ANTIRETROVIRAL DRUG TARGETING
DRUG DELIVERY SYSTEMS (DDS)
HIV INFECTION
topic ANTIRETROVIRAL DRUG TARGETING
DRUG DELIVERY SYSTEMS (DDS)
HIV INFECTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Worldwide, over 40 million people are infected with the Human Immunodeficiency Virus (HIV). The High Activity Antiretroviral Therapy (HAART) combines at least three antiretroviral (ARV) drugs and, for over a decade, has been used to extend the lifespan of the HIV-infected patients. Chronic intake of HAART is mandatory to control HIV infection. The frequent administration of several drugs in relatively high doses is a main cause of patient incompliance and a hurdle toward the fulfillment of the pharmacotherapy. High adherence to HAART does not lead to complete HIV virus elimination from the host. Intracellular and anatomical viral reservoirs are responsible for the perpetuation of the infection. Active transport mechanisms involving proteins of the ATP-binding cassette prevent the penetration of ARV drugs into the brain and may account for the limited bioavailability after oral administration. A new research that addresses from simple organoleptic or technological problems to more complex issues involving the targeting of specific tissues and organs has emerged. With the aim to reduce dosing frequency, to improve the compliance of the existing pharmacotherapy and to target viral reservoirs, the design of drug delivery systems is becoming complementary to new drug discovery. Based on to the common molecular features that characterize the different families of ARV drugs, the present review describes state-of-the-art ARV DDS and thoroughly discusses the challenges in the development of medicines with enhanced biopharmaceutical properties. In addition, a number of specific issues such as pediatric HAART, preventive pharmacotherapy and specific HIV-associated ethical issues are addressed in an integrative manner. Finally, the impact of such novel drug development on the Pharmaceutical Technology field is discussed.
Fil: Sosnik, Alejandro Dario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Chiappetta, Diego Andrés. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Carcaboso, Ángel M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
description Worldwide, over 40 million people are infected with the Human Immunodeficiency Virus (HIV). The High Activity Antiretroviral Therapy (HAART) combines at least three antiretroviral (ARV) drugs and, for over a decade, has been used to extend the lifespan of the HIV-infected patients. Chronic intake of HAART is mandatory to control HIV infection. The frequent administration of several drugs in relatively high doses is a main cause of patient incompliance and a hurdle toward the fulfillment of the pharmacotherapy. High adherence to HAART does not lead to complete HIV virus elimination from the host. Intracellular and anatomical viral reservoirs are responsible for the perpetuation of the infection. Active transport mechanisms involving proteins of the ATP-binding cassette prevent the penetration of ARV drugs into the brain and may account for the limited bioavailability after oral administration. A new research that addresses from simple organoleptic or technological problems to more complex issues involving the targeting of specific tissues and organs has emerged. With the aim to reduce dosing frequency, to improve the compliance of the existing pharmacotherapy and to target viral reservoirs, the design of drug delivery systems is becoming complementary to new drug discovery. Based on to the common molecular features that characterize the different families of ARV drugs, the present review describes state-of-the-art ARV DDS and thoroughly discusses the challenges in the development of medicines with enhanced biopharmaceutical properties. In addition, a number of specific issues such as pediatric HAART, preventive pharmacotherapy and specific HIV-associated ethical issues are addressed in an integrative manner. Finally, the impact of such novel drug development on the Pharmaceutical Technology field is discussed.
publishDate 2009
dc.date.none.fl_str_mv 2009-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/160881
Sosnik, Alejandro Dario; Chiappetta, Diego Andrés; Carcaboso, Ángel M.; Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead; Elsevier Science; Journal of Controlled Release; 138; 1; 8-2009; 2-15
0168-3659
CONICET Digital
CONICET
url http://hdl.handle.net/11336/160881
identifier_str_mv Sosnik, Alejandro Dario; Chiappetta, Diego Andrés; Carcaboso, Ángel M.; Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead; Elsevier Science; Journal of Controlled Release; 138; 1; 8-2009; 2-15
0168-3659
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168365909003010
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jconrel.2009.05.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614180820221952
score 13.070432