Development of nanosystems for active tumor targeting in photodynamic therapy
- Autores
- Ibarra, Luis Exequiel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cancer is one of the major public health problems worldwide. According to the International Agency for Research on Cancer, an estimated 19.3 million new cancer cases and almost 10 million cancer deaths occurred in 2020 [1]. Furthermore, the diagnosis and treatment of cancer have been hampered by the coronavirus disease 2019 (COVID-19) pandemic and it is expected to result in an increased cancer mortality over the next years due to a delay in the diagnoses, and also due to an interruption in the treatments that had been applied to cancer patients. For example, the U.S. National Cancer Institute estimated a 1% increase in deaths related to breast and colorectal cancer over the next 10 years, the equivalent of approximately 10,000 more deaths, due to the impact of the pandemic [2]. This highlights the need to continue in the search of new therapeutic compounds in order to reduce the chance of cancer recurrence after traditional treatments such as surgery and radiotherapy.Some of these new treatments could be used as primary or adjuvant therapeutic options, for instance, photodynamic therapy (PDT) arises as an improved treatment tool due to its highly effective, non-invasive and localized therapeutic action. Taking consideration of the selective action in the irradiation tumor area with PDT, and that it is a treatment that does not compromise other treatment options and presents reduced long-term morbidity when compared with chemotherapy or radiotherapy, this photo-assisted therapy is positioned as a main and/or adjuvant treatment in the fight against cancer. PDT has been approved by the Food Drug Administration (FDA), and also by other regulatory agencies around the world, to treat a variety of tumors and malignancies in the clinic [3]. For the success of PDT, three elements must converge in tumor cells: photosensitizer (PS) accumulation, light irradiation penetration and the presence of molecular oxygen. More of the recent developments regarding PDT have been made around the generation of new PSs.
Fil: Ibarra, Luis Exequiel. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina - Materia
-
ACTIVE TARGETING
CANCER
DRUG DELIVERY
NANOPARTICLES
PHOTOSENSITIZERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202086
Ver los metadatos del registro completo
| id |
CONICETDig_246decb2872fc1730d6fc3bd89c0b75a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202086 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Development of nanosystems for active tumor targeting in photodynamic therapyIbarra, Luis ExequielACTIVE TARGETINGCANCERDRUG DELIVERYNANOPARTICLESPHOTOSENSITIZERShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Cancer is one of the major public health problems worldwide. According to the International Agency for Research on Cancer, an estimated 19.3 million new cancer cases and almost 10 million cancer deaths occurred in 2020 [1]. Furthermore, the diagnosis and treatment of cancer have been hampered by the coronavirus disease 2019 (COVID-19) pandemic and it is expected to result in an increased cancer mortality over the next years due to a delay in the diagnoses, and also due to an interruption in the treatments that had been applied to cancer patients. For example, the U.S. National Cancer Institute estimated a 1% increase in deaths related to breast and colorectal cancer over the next 10 years, the equivalent of approximately 10,000 more deaths, due to the impact of the pandemic [2]. This highlights the need to continue in the search of new therapeutic compounds in order to reduce the chance of cancer recurrence after traditional treatments such as surgery and radiotherapy.Some of these new treatments could be used as primary or adjuvant therapeutic options, for instance, photodynamic therapy (PDT) arises as an improved treatment tool due to its highly effective, non-invasive and localized therapeutic action. Taking consideration of the selective action in the irradiation tumor area with PDT, and that it is a treatment that does not compromise other treatment options and presents reduced long-term morbidity when compared with chemotherapy or radiotherapy, this photo-assisted therapy is positioned as a main and/or adjuvant treatment in the fight against cancer. PDT has been approved by the Food Drug Administration (FDA), and also by other regulatory agencies around the world, to treat a variety of tumors and malignancies in the clinic [3]. For the success of PDT, three elements must converge in tumor cells: photosensitizer (PS) accumulation, light irradiation penetration and the presence of molecular oxygen. More of the recent developments regarding PDT have been made around the generation of new PSs.Fil: Ibarra, Luis Exequiel. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; ArgentinaNewlands Press Ltd2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202086Ibarra, Luis Exequiel; Development of nanosystems for active tumor targeting in photodynamic therapy; Newlands Press Ltd; Therapeutic Delivery; 13; 2; 2-2022; 71-742041-59902041-6008CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4155/tde-2021-0083info:eu-repo/semantics/altIdentifier/url/https://www.future-science.com/doi/10.4155/tde-2021-0083info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:11:08Zoai:ri.conicet.gov.ar:11336/202086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:11:09.169CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| title |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| spellingShingle |
Development of nanosystems for active tumor targeting in photodynamic therapy Ibarra, Luis Exequiel ACTIVE TARGETING CANCER DRUG DELIVERY NANOPARTICLES PHOTOSENSITIZERS |
| title_short |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| title_full |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| title_fullStr |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| title_full_unstemmed |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| title_sort |
Development of nanosystems for active tumor targeting in photodynamic therapy |
| dc.creator.none.fl_str_mv |
Ibarra, Luis Exequiel |
| author |
Ibarra, Luis Exequiel |
| author_facet |
Ibarra, Luis Exequiel |
| author_role |
author |
| dc.subject.none.fl_str_mv |
ACTIVE TARGETING CANCER DRUG DELIVERY NANOPARTICLES PHOTOSENSITIZERS |
| topic |
ACTIVE TARGETING CANCER DRUG DELIVERY NANOPARTICLES PHOTOSENSITIZERS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Cancer is one of the major public health problems worldwide. According to the International Agency for Research on Cancer, an estimated 19.3 million new cancer cases and almost 10 million cancer deaths occurred in 2020 [1]. Furthermore, the diagnosis and treatment of cancer have been hampered by the coronavirus disease 2019 (COVID-19) pandemic and it is expected to result in an increased cancer mortality over the next years due to a delay in the diagnoses, and also due to an interruption in the treatments that had been applied to cancer patients. For example, the U.S. National Cancer Institute estimated a 1% increase in deaths related to breast and colorectal cancer over the next 10 years, the equivalent of approximately 10,000 more deaths, due to the impact of the pandemic [2]. This highlights the need to continue in the search of new therapeutic compounds in order to reduce the chance of cancer recurrence after traditional treatments such as surgery and radiotherapy.Some of these new treatments could be used as primary or adjuvant therapeutic options, for instance, photodynamic therapy (PDT) arises as an improved treatment tool due to its highly effective, non-invasive and localized therapeutic action. Taking consideration of the selective action in the irradiation tumor area with PDT, and that it is a treatment that does not compromise other treatment options and presents reduced long-term morbidity when compared with chemotherapy or radiotherapy, this photo-assisted therapy is positioned as a main and/or adjuvant treatment in the fight against cancer. PDT has been approved by the Food Drug Administration (FDA), and also by other regulatory agencies around the world, to treat a variety of tumors and malignancies in the clinic [3]. For the success of PDT, three elements must converge in tumor cells: photosensitizer (PS) accumulation, light irradiation penetration and the presence of molecular oxygen. More of the recent developments regarding PDT have been made around the generation of new PSs. Fil: Ibarra, Luis Exequiel. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina |
| description |
Cancer is one of the major public health problems worldwide. According to the International Agency for Research on Cancer, an estimated 19.3 million new cancer cases and almost 10 million cancer deaths occurred in 2020 [1]. Furthermore, the diagnosis and treatment of cancer have been hampered by the coronavirus disease 2019 (COVID-19) pandemic and it is expected to result in an increased cancer mortality over the next years due to a delay in the diagnoses, and also due to an interruption in the treatments that had been applied to cancer patients. For example, the U.S. National Cancer Institute estimated a 1% increase in deaths related to breast and colorectal cancer over the next 10 years, the equivalent of approximately 10,000 more deaths, due to the impact of the pandemic [2]. This highlights the need to continue in the search of new therapeutic compounds in order to reduce the chance of cancer recurrence after traditional treatments such as surgery and radiotherapy.Some of these new treatments could be used as primary or adjuvant therapeutic options, for instance, photodynamic therapy (PDT) arises as an improved treatment tool due to its highly effective, non-invasive and localized therapeutic action. Taking consideration of the selective action in the irradiation tumor area with PDT, and that it is a treatment that does not compromise other treatment options and presents reduced long-term morbidity when compared with chemotherapy or radiotherapy, this photo-assisted therapy is positioned as a main and/or adjuvant treatment in the fight against cancer. PDT has been approved by the Food Drug Administration (FDA), and also by other regulatory agencies around the world, to treat a variety of tumors and malignancies in the clinic [3]. For the success of PDT, three elements must converge in tumor cells: photosensitizer (PS) accumulation, light irradiation penetration and the presence of molecular oxygen. More of the recent developments regarding PDT have been made around the generation of new PSs. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202086 Ibarra, Luis Exequiel; Development of nanosystems for active tumor targeting in photodynamic therapy; Newlands Press Ltd; Therapeutic Delivery; 13; 2; 2-2022; 71-74 2041-5990 2041-6008 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/202086 |
| identifier_str_mv |
Ibarra, Luis Exequiel; Development of nanosystems for active tumor targeting in photodynamic therapy; Newlands Press Ltd; Therapeutic Delivery; 13; 2; 2-2022; 71-74 2041-5990 2041-6008 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4155/tde-2021-0083 info:eu-repo/semantics/altIdentifier/url/https://www.future-science.com/doi/10.4155/tde-2021-0083 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Newlands Press Ltd |
| publisher.none.fl_str_mv |
Newlands Press Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782501561827328 |
| score |
12.982451 |