Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
- Autores
- Soliz, Tania S.; Marín Ramírez, Oscar Alonso; Gutiérrez, Jorge Andrés; Tirado, Monica Cecilia; Figueroa, Carlos; Comedi, David Mario
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno.
Fil: Soliz, Tania S.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Gutiérrez, Jorge Andrés. Universidad del Quindio; Colombia
Fil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Figueroa, Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
103a Reunión de la Asociación Física Argentina
Buenos Aires
Argentina
Asociación Física Argentina - Materia
-
ZNO
SÍNTESIS HIDROTÉRMICA
DOPAJE
PROPIEDADES ÓPTICAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243566
Ver los metadatos del registro completo
id |
CONICETDig_789af68d192fd972288cc5dcedf6bc0f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243566 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructuralesSoliz, Tania S.Marín Ramírez, Oscar AlonsoGutiérrez, Jorge AndrésTirado, Monica CeciliaFigueroa, CarlosComedi, David MarioZNOSÍNTESIS HIDROTÉRMICADOPAJEPROPIEDADES ÓPTICAShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno.Fil: Soliz, Tania S.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Gutiérrez, Jorge Andrés. Universidad del Quindio; ColombiaFil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Figueroa, Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina103a Reunión de la Asociación Física ArgentinaBuenos AiresArgentinaAsociación Física ArgentinaAsociación Física Argentina2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243566Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales; 103a Reunión de la Asociación Física Argentina; Buenos Aires; Argentina; 2018; 177-178CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.fisica.org.ar/actividades/rafas/libros-de-resumenes/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:29Zoai:ri.conicet.gov.ar:11336/243566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:29.423CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
title |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
spellingShingle |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales Soliz, Tania S. ZNO SÍNTESIS HIDROTÉRMICA DOPAJE PROPIEDADES ÓPTICAS |
title_short |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
title_full |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
title_fullStr |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
title_full_unstemmed |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
title_sort |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales |
dc.creator.none.fl_str_mv |
Soliz, Tania S. Marín Ramírez, Oscar Alonso Gutiérrez, Jorge Andrés Tirado, Monica Cecilia Figueroa, Carlos Comedi, David Mario |
author |
Soliz, Tania S. |
author_facet |
Soliz, Tania S. Marín Ramírez, Oscar Alonso Gutiérrez, Jorge Andrés Tirado, Monica Cecilia Figueroa, Carlos Comedi, David Mario |
author_role |
author |
author2 |
Marín Ramírez, Oscar Alonso Gutiérrez, Jorge Andrés Tirado, Monica Cecilia Figueroa, Carlos Comedi, David Mario |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ZNO SÍNTESIS HIDROTÉRMICA DOPAJE PROPIEDADES ÓPTICAS |
topic |
ZNO SÍNTESIS HIDROTÉRMICA DOPAJE PROPIEDADES ÓPTICAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno. Fil: Soliz, Tania S.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina Fil: Gutiérrez, Jorge Andrés. Universidad del Quindio; Colombia Fil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina Fil: Figueroa, Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina 103a Reunión de la Asociación Física Argentina Buenos Aires Argentina Asociación Física Argentina |
description |
En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243566 Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales; 103a Reunión de la Asociación Física Argentina; Buenos Aires; Argentina; 2018; 177-178 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243566 |
identifier_str_mv |
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales; 103a Reunión de la Asociación Física Argentina; Buenos Aires; Argentina; 2018; 177-178 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.fisica.org.ar/actividades/rafas/libros-de-resumenes/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268669536632832 |
score |
13.13397 |