Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales

Autores
Soliz, Tania S.; Marín Ramírez, Oscar Alonso; Gutiérrez, Jorge Andrés; Tirado, Monica Cecilia; Figueroa, Carlos; Comedi, David Mario
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno.
Fil: Soliz, Tania S.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Gutiérrez, Jorge Andrés. Universidad del Quindio; Colombia
Fil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Figueroa, Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
103a Reunión de la Asociación Física Argentina
Buenos Aires
Argentina
Asociación Física Argentina
Materia
ZNO
SÍNTESIS HIDROTÉRMICA
DOPAJE
PROPIEDADES ÓPTICAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/243566

id CONICETDig_789af68d192fd972288cc5dcedf6bc0f
oai_identifier_str oai:ri.conicet.gov.ar:11336/243566
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructuralesSoliz, Tania S.Marín Ramírez, Oscar AlonsoGutiérrez, Jorge AndrésTirado, Monica CeciliaFigueroa, CarlosComedi, David MarioZNOSÍNTESIS HIDROTÉRMICADOPAJEPROPIEDADES ÓPTICAShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno.Fil: Soliz, Tania S.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Gutiérrez, Jorge Andrés. Universidad del Quindio; ColombiaFil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Figueroa, Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina103a Reunión de la Asociación Física ArgentinaBuenos AiresArgentinaAsociación Física ArgentinaAsociación Física Argentina2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243566Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales; 103a Reunión de la Asociación Física Argentina; Buenos Aires; Argentina; 2018; 177-178CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.fisica.org.ar/actividades/rafas/libros-de-resumenes/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:29Zoai:ri.conicet.gov.ar:11336/243566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:29.423CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
title Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
spellingShingle Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
Soliz, Tania S.
ZNO
SÍNTESIS HIDROTÉRMICA
DOPAJE
PROPIEDADES ÓPTICAS
title_short Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
title_full Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
title_fullStr Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
title_full_unstemmed Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
title_sort Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales
dc.creator.none.fl_str_mv Soliz, Tania S.
Marín Ramírez, Oscar Alonso
Gutiérrez, Jorge Andrés
Tirado, Monica Cecilia
Figueroa, Carlos
Comedi, David Mario
author Soliz, Tania S.
author_facet Soliz, Tania S.
Marín Ramírez, Oscar Alonso
Gutiérrez, Jorge Andrés
Tirado, Monica Cecilia
Figueroa, Carlos
Comedi, David Mario
author_role author
author2 Marín Ramírez, Oscar Alonso
Gutiérrez, Jorge Andrés
Tirado, Monica Cecilia
Figueroa, Carlos
Comedi, David Mario
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv ZNO
SÍNTESIS HIDROTÉRMICA
DOPAJE
PROPIEDADES ÓPTICAS
topic ZNO
SÍNTESIS HIDROTÉRMICA
DOPAJE
PROPIEDADES ÓPTICAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno.
Fil: Soliz, Tania S.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Gutiérrez, Jorge Andrés. Universidad del Quindio; Colombia
Fil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Figueroa, Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
103a Reunión de la Asociación Física Argentina
Buenos Aires
Argentina
Asociación Física Argentina
description En la actualidad, diversos grupos de investigación invierten un gran esfuerzo en desarrollar protocolos de síntesis de semiconductores a través de métodos a baja temperatura. Aunque la disminución de costos de producción es un punto importante que impulsa estos desarrollos, la inclusión de semiconductores en sistemas termosensibles y la aparición de fases metaestables con nuevas propiedades también motivan ésta búsqueda. En este sentido, la técnica hidrotérmica se posiciona como una estrategia funcional con múltiples beneficios, incluyendo, entre otras, la capacidad de obtener diversas morfologías y la posibilidad de diseñar materiales tanto simples comocomplejos. Por sus aplicaciones polifuncionales, la síntesis de ZnO nano y microestructurado y el estudio de sus propiedades físicas han despertado mucho interés en los últimos años. El ZnO es un material semiconductor conestructura de banda directa y una energía de 3.37 eV, lo cual junto a una energía de ligadura excitónica de 60 meV lo hace candidato para múltiples aplicaciones ópticas y optoelectrónicas. Además, cristaliza con una estructurahexagonal tipo wurtzita formando subredes de oxígeno y zinc que se intercalan, lo cual, debido a la diferencia en electronegatividad de estos elementos, polariza el material a lo largo del eje c. Una de las estrategias paramodificar y/o controlar las propiedades ópticas y eléctricas del ZnO es la inclusión de metales en su red cristalina, dado que este proceso altera la energía y estructura de bandas. En este trabajo, obtenemos polvos policristalinos de ZnO, ZnO:Al y ZnO:Sr a través de síntesis hidrotérmica. Para la síntesis del ZnO, se mezclaron 1.5 mL de una solución acuosa 0.5 M de nitrato de zinc hexahidratado y 4 mL de dietanolamina en un vaso cerrado deteflón de 25 mL, después se agregó agua destilada en cantidad necesaria para completar 12.5 mL; la mezcla se agitó vigorosamente y se introdujo en un autoclave de acero inoxidable, éste se puso en una estufa a 125 ◦Cdurante 4 horas. Finalmente, se dejó enfriar durante 1 hora antes de abrir el autoclave y extraer/lavar el producto obtenido. Para obtener el ZnO:Al y ZnO:Sr (esquematizado como ZnO:M), se realizó el mismo procedimiento, peroagregando la cantidad necesaria de una solución acuosa 0.05 M de cloruro de aluminio hexahidratado o cloruro de estroncio hexahidratado para obtener proporciones atómicas de Zn+2:M de 99:1 y 96:4 para cada metal. A travésde microscopía de electrónica de barrido, observamos que los polvos obtenidos están compuestos por aglomerados de nanopartículas que forman sub-micropartículas con una alta variación en su diámetro, mostrando además unadependencia con la composición. La presencia de Zn, Al y Sr fue confirmada a través de espectroscopia de rayos X dispersiva en energía. A través de difracción de rayos X y microscopia Raman confirmamos que el materialobtenido en todos los casos corresponde a la fase wurzita del ZnO, sin observar la presencia de segundas fases correspondientes a óxidos de aluminio u óxidos de estroncio. Adicionalmente, la disminución de los parámetros de red -obtenidos de los difractogramas- cuando se agrega Al+3 y su respectivo aumento cuando se agrega Sr+2, indica que dichos átomos fueron incorporados de forma sustitucional dentro de la red cristalina del ZnO. Junto a esto, observamos corrimientos sistem´aticos en la señal Raman que aparece a 99 cm-1, que responde a vibraciones de la subred de zinc, que confirman este resultado. Usando espectroscopia de fotoluminiscencia observamos que las muestras presentan emisión tanto ultravioleta como visible, estando esta ´ultima dominada por emisión en el amarillo, que resulta de procesos de recombinación a través defectos puntuales asociados a vacancias de oxígeno.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/243566
Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales; 103a Reunión de la Asociación Física Argentina; Buenos Aires; Argentina; 2018; 177-178
CONICET Digital
CONICET
url http://hdl.handle.net/11336/243566
identifier_str_mv Sub-microparticulas de ZnO: efecto de la inclusión de Sr+2 y Al+3 sobre sus propiedades ópticas y estructurales; 103a Reunión de la Asociación Física Argentina; Buenos Aires; Argentina; 2018; 177-178
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.fisica.org.ar/actividades/rafas/libros-de-resumenes/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Asociación Física Argentina
publisher.none.fl_str_mv Asociación Física Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268669536632832
score 13.13397