Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells
- Autores
- Cacicedo, Maximiliano Luis; Leon, Ignacio Esteban; Gonzalez, Jimena Soledad; Porto, Luismar M.; Alvarez, Vera Alejandra; Castro, Guillermo Raul
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer?Emmett?Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett?Joyner?Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film.Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95?53% after 24 h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors.
Fil: Cacicedo, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina
Fil: Leon, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica ; Argentina
Fil: Gonzalez, Jimena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Porto, Luismar M.. Universidade Federal de Santa Catarina; Brasil
Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Castro, Guillermo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina - Materia
-
Bacterial cellulose
Alginate
Drug delivery
Nanocomposite
Doxorubicin
Cancer therapy
Human colorectal HT-29 cells - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/34537
Ver los metadatos del registro completo
id |
CONICETDig_77dd19aedbc3bcff8318885e496bafb1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/34537 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cellsCacicedo, Maximiliano LuisLeon, Ignacio EstebanGonzalez, Jimena SoledadPorto, Luismar M.Alvarez, Vera AlejandraCastro, Guillermo RaulBacterial celluloseAlginateDrug deliveryNanocompositeDoxorubicinCancer therapyHuman colorectal HT-29 cellshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer?Emmett?Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett?Joyner?Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film.Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95?53% after 24 h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors.Fil: Cacicedo, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Leon, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica ; ArgentinaFil: Gonzalez, Jimena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Porto, Luismar M.. Universidade Federal de Santa Catarina; BrasilFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Castro, Guillermo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaElsevier2016-01-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34537Cacicedo, Maximiliano Luis; Leon, Ignacio Esteban; Gonzalez, Jimena Soledad; Porto, Luismar M.; Alvarez, Vera Alejandra; et al.; Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells; Elsevier; Colloids and Surfaces B: Biointerfaces; 140; 11-1-2016; 421-4290927-7765CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927776516300066info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfb.2016.01.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:19Zoai:ri.conicet.gov.ar:11336/34537instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:20.007CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
title |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
spellingShingle |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells Cacicedo, Maximiliano Luis Bacterial cellulose Alginate Drug delivery Nanocomposite Doxorubicin Cancer therapy Human colorectal HT-29 cells |
title_short |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
title_full |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
title_fullStr |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
title_full_unstemmed |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
title_sort |
Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells |
dc.creator.none.fl_str_mv |
Cacicedo, Maximiliano Luis Leon, Ignacio Esteban Gonzalez, Jimena Soledad Porto, Luismar M. Alvarez, Vera Alejandra Castro, Guillermo Raul |
author |
Cacicedo, Maximiliano Luis |
author_facet |
Cacicedo, Maximiliano Luis Leon, Ignacio Esteban Gonzalez, Jimena Soledad Porto, Luismar M. Alvarez, Vera Alejandra Castro, Guillermo Raul |
author_role |
author |
author2 |
Leon, Ignacio Esteban Gonzalez, Jimena Soledad Porto, Luismar M. Alvarez, Vera Alejandra Castro, Guillermo Raul |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Bacterial cellulose Alginate Drug delivery Nanocomposite Doxorubicin Cancer therapy Human colorectal HT-29 cells |
topic |
Bacterial cellulose Alginate Drug delivery Nanocomposite Doxorubicin Cancer therapy Human colorectal HT-29 cells |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer?Emmett?Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett?Joyner?Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film.Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95?53% after 24 h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors. Fil: Cacicedo, Maximiliano Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina Fil: Leon, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica ; Argentina Fil: Gonzalez, Jimena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Porto, Luismar M.. Universidade Federal de Santa Catarina; Brasil Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Castro, Guillermo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina |
description |
Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer?Emmett?Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett?Joyner?Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film.Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95?53% after 24 h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/34537 Cacicedo, Maximiliano Luis; Leon, Ignacio Esteban; Gonzalez, Jimena Soledad; Porto, Luismar M.; Alvarez, Vera Alejandra; et al.; Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells; Elsevier; Colloids and Surfaces B: Biointerfaces; 140; 11-1-2016; 421-429 0927-7765 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/34537 |
identifier_str_mv |
Cacicedo, Maximiliano Luis; Leon, Ignacio Esteban; Gonzalez, Jimena Soledad; Porto, Luismar M.; Alvarez, Vera Alejandra; et al.; Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells; Elsevier; Colloids and Surfaces B: Biointerfaces; 140; 11-1-2016; 421-429 0927-7765 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927776516300066 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfb.2016.01.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613023164006400 |
score |
13.070432 |