Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps

Autores
Ezquerra Riega, Sergio Dario; Rodriguez, Hernan Bernardo; San Roman, Enrique Arnoldo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF=0.05±0.01 andΦΔ=0.76±0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05Mand concentration self-quenching after 0.01Mare interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius rQ=1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF, trap/ΦF, monomer≈0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.
Fil: Ezquerra Riega, Sergio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Rodriguez, Hernan Bernardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: San Roman, Enrique Arnoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Materia
Energy Trapping
Fluorescence
Phema
Polymer Films
Rose Bengal
Singlet Molecular Oxygen
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63823

id CONICETDig_77cc8e973781f6ae04eff657f365a6ac
oai_identifier_str oai:ri.conicet.gov.ar:11336/63823
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy trapsEzquerra Riega, Sergio DarioRodriguez, Hernan BernardoSan Roman, Enrique ArnoldoEnergy TrappingFluorescencePhemaPolymer FilmsRose BengalSinglet Molecular Oxygenhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF=0.05±0.01 andΦΔ=0.76±0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05Mand concentration self-quenching after 0.01Mare interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius rQ=1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF, trap/ΦF, monomer≈0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.Fil: Ezquerra Riega, Sergio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rodriguez, Hernan Bernardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: San Roman, Enrique Arnoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaIOP Publishing2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63823Ezquerra Riega, Sergio Dario; Rodriguez, Hernan Bernardo; San Roman, Enrique Arnoldo; Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps; IOP Publishing; Methods and Applications in Fluorescence; 5; 1; 3-20172050-6120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/2050-6120/aa61aeinfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/2050-6120/aa61ae/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:05:43Zoai:ri.conicet.gov.ar:11336/63823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:05:43.931CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
title Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
spellingShingle Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
Ezquerra Riega, Sergio Dario
Energy Trapping
Fluorescence
Phema
Polymer Films
Rose Bengal
Singlet Molecular Oxygen
title_short Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
title_full Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
title_fullStr Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
title_full_unstemmed Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
title_sort Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
dc.creator.none.fl_str_mv Ezquerra Riega, Sergio Dario
Rodriguez, Hernan Bernardo
San Roman, Enrique Arnoldo
author Ezquerra Riega, Sergio Dario
author_facet Ezquerra Riega, Sergio Dario
Rodriguez, Hernan Bernardo
San Roman, Enrique Arnoldo
author_role author
author2 Rodriguez, Hernan Bernardo
San Roman, Enrique Arnoldo
author2_role author
author
dc.subject.none.fl_str_mv Energy Trapping
Fluorescence
Phema
Polymer Films
Rose Bengal
Singlet Molecular Oxygen
topic Energy Trapping
Fluorescence
Phema
Polymer Films
Rose Bengal
Singlet Molecular Oxygen
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF=0.05±0.01 andΦΔ=0.76±0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05Mand concentration self-quenching after 0.01Mare interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius rQ=1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF, trap/ΦF, monomer≈0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.
Fil: Ezquerra Riega, Sergio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Rodriguez, Hernan Bernardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: San Roman, Enrique Arnoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
description The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF=0.05±0.01 andΦΔ=0.76±0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05Mand concentration self-quenching after 0.01Mare interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius rQ=1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF, trap/ΦF, monomer≈0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63823
Ezquerra Riega, Sergio Dario; Rodriguez, Hernan Bernardo; San Roman, Enrique Arnoldo; Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps; IOP Publishing; Methods and Applications in Fluorescence; 5; 1; 3-2017
2050-6120
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63823
identifier_str_mv Ezquerra Riega, Sergio Dario; Rodriguez, Hernan Bernardo; San Roman, Enrique Arnoldo; Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps; IOP Publishing; Methods and Applications in Fluorescence; 5; 1; 3-2017
2050-6120
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/2050-6120/aa61ae
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/2050-6120/aa61ae/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781342333796352
score 12.982451