Wadge hardness in Scott spaces and its effectivization

Autores
Becher, Veronica Andrea; Grigorieff, Serge
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Grigorieff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; Francia
Materia
Wadge reductions
Scott spaces
Borel Hierarchy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84563

id CONICETDig_778355da20f32398d24cc67ac6cabf1d
oai_identifier_str oai:ri.conicet.gov.ar:11336/84563
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Wadge hardness in Scott spaces and its effectivizationBecher, Veronica AndreaGrigorieff, SergeWadge reductionsScott spacesBorel Hierarchyhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Grigorieff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; FranciaCambridge University Press2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84563Becher, Veronica Andrea; Grigorieff, Serge; Wadge hardness in Scott spaces and its effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1520-15450960-1295CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0960129513000248info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/wadge-hardness-in-scott-spaces-and-its-effectivization/050219A4FA4B50A5D14398AEA3DBBABBinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0331info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:22Zoai:ri.conicet.gov.ar:11336/84563instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:22.882CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Wadge hardness in Scott spaces and its effectivization
title Wadge hardness in Scott spaces and its effectivization
spellingShingle Wadge hardness in Scott spaces and its effectivization
Becher, Veronica Andrea
Wadge reductions
Scott spaces
Borel Hierarchy
title_short Wadge hardness in Scott spaces and its effectivization
title_full Wadge hardness in Scott spaces and its effectivization
title_fullStr Wadge hardness in Scott spaces and its effectivization
title_full_unstemmed Wadge hardness in Scott spaces and its effectivization
title_sort Wadge hardness in Scott spaces and its effectivization
dc.creator.none.fl_str_mv Becher, Veronica Andrea
Grigorieff, Serge
author Becher, Veronica Andrea
author_facet Becher, Veronica Andrea
Grigorieff, Serge
author_role author
author2 Grigorieff, Serge
author2_role author
dc.subject.none.fl_str_mv Wadge reductions
Scott spaces
Borel Hierarchy
topic Wadge reductions
Scott spaces
Borel Hierarchy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Grigorieff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; Francia
description We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84563
Becher, Veronica Andrea; Grigorieff, Serge; Wadge hardness in Scott spaces and its effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1520-1545
0960-1295
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84563
identifier_str_mv Becher, Veronica Andrea; Grigorieff, Serge; Wadge hardness in Scott spaces and its effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1520-1545
0960-1295
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/S0960129513000248
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/wadge-hardness-in-scott-spaces-and-its-effectivization/050219A4FA4B50A5D14398AEA3DBBABB
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0331
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082924881903616
score 13.22299