Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
- Autores
- Becher, Veronica Andrea; Grigoreff, Serge
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grigoreff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; Francia - Materia
-
Borel Hierarchy
Choquet Games
Approximation Spaces
Quasi Metric Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84547
Ver los metadatos del registro completo
id |
CONICETDig_744fc558c0a31cc456a001e00610c8d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84547 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivizationBecher, Veronica AndreaGrigoreff, SergeBorel HierarchyChoquet GamesApproximation SpacesQuasi Metric Spaceshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Grigoreff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; FranciaCambridge University Press2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84547Becher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-15190960-1295CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S096012951300025Xinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/borel-and-hausdorff-hierarchies-in-topological-spaces-of-choquet-games-and-their-effectivization/267CF2C64ECC787C1C4B02E68F07CAD3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0330info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:12:01Zoai:ri.conicet.gov.ar:11336/84547instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:12:01.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
title |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
spellingShingle |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization Becher, Veronica Andrea Borel Hierarchy Choquet Games Approximation Spaces Quasi Metric Spaces |
title_short |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
title_full |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
title_fullStr |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
title_full_unstemmed |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
title_sort |
Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization |
dc.creator.none.fl_str_mv |
Becher, Veronica Andrea Grigoreff, Serge |
author |
Becher, Veronica Andrea |
author_facet |
Becher, Veronica Andrea Grigoreff, Serge |
author_role |
author |
author2 |
Grigoreff, Serge |
author2_role |
author |
dc.subject.none.fl_str_mv |
Borel Hierarchy Choquet Games Approximation Spaces Quasi Metric Spaces |
topic |
Borel Hierarchy Choquet Games Approximation Spaces Quasi Metric Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results. Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Grigoreff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; Francia |
description |
What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84547 Becher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-1519 0960-1295 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84547 |
identifier_str_mv |
Becher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-1519 0960-1295 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S096012951300025X info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/borel-and-hausdorff-hierarchies-in-topological-spaces-of-choquet-games-and-their-effectivization/267CF2C64ECC787C1C4B02E68F07CAD3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0330 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270182055084032 |
score |
13.13397 |