Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization

Autores
Becher, Veronica Andrea; Grigoreff, Serge
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grigoreff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; Francia
Materia
Borel Hierarchy
Choquet Games
Approximation Spaces
Quasi Metric Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84547

id CONICETDig_744fc558c0a31cc456a001e00610c8d6
oai_identifier_str oai:ri.conicet.gov.ar:11336/84547
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivizationBecher, Veronica AndreaGrigoreff, SergeBorel HierarchyChoquet GamesApproximation SpacesQuasi Metric Spaceshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Grigoreff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; FranciaCambridge University Press2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84547Becher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-15190960-1295CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S096012951300025Xinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/borel-and-hausdorff-hierarchies-in-topological-spaces-of-choquet-games-and-their-effectivization/267CF2C64ECC787C1C4B02E68F07CAD3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0330info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:12:01Zoai:ri.conicet.gov.ar:11336/84547instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:12:01.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
title Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
spellingShingle Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
Becher, Veronica Andrea
Borel Hierarchy
Choquet Games
Approximation Spaces
Quasi Metric Spaces
title_short Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
title_full Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
title_fullStr Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
title_full_unstemmed Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
title_sort Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
dc.creator.none.fl_str_mv Becher, Veronica Andrea
Grigoreff, Serge
author Becher, Veronica Andrea
author_facet Becher, Veronica Andrea
Grigoreff, Serge
author_role author
author2 Grigoreff, Serge
author2_role author
dc.subject.none.fl_str_mv Borel Hierarchy
Choquet Games
Approximation Spaces
Quasi Metric Spaces
topic Borel Hierarchy
Choquet Games
Approximation Spaces
Quasi Metric Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Grigoreff, Serge. Université Paris Diderot - Paris 7; Francia. Centre National de la Recherche Scientifique; Francia
description What parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84547
Becher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-1519
0960-1295
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84547
identifier_str_mv Becher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-1519
0960-1295
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/S096012951300025X
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/borel-and-hausdorff-hierarchies-in-topological-spaces-of-choquet-games-and-their-effectivization/267CF2C64ECC787C1C4B02E68F07CAD3
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0330
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270182055084032
score 13.13397