Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series
- Autores
- Amherdt, Sebastián; Di Leo, Néstor Cristian; Pereira, Ayelen; Cornero, Cecilia; Pacino, Maria Cristina
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work aims to evaluate the added value of interferometric coherence to backscatter information of Synthetic Aperture Radar (SAR) systems for soybean and corn mapping. First, SAR response to crop growth, and then accuracies for the classification using a combination of SAR variables were evaluated for scenarios that employ in-season or the entire season time series. Results showed that: i) using a single feature, the backscatter at vertical-horizontal (VH) polarization would be the most suitable variable; ii) the complementarity of coherence to single backscatter at vertical-vertical (VV) polarization was demonstrated, adding a significant contribution to late sown corns differentiation and iii) the combination of VV and VH backscatter would be the preferable variables for the proposed classification. In this case, the adding of coherence did not show a significant accuracy improvement, while a high computational cost is required. Finally, high general accuracies (until 90%) for early-season maps were achieved.
Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Di Leo, Néstor Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Pereira, Ayelen. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Cornero, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Pacino, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
CROP MAPPING
INSAR COHERENCE
SAR TIME SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216964
Ver los metadatos del registro completo
id |
CONICETDig_771733e30af3e9b1cab6fded863c9570 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216964 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time seriesAmherdt, SebastiánDi Leo, Néstor CristianPereira, AyelenCornero, CeciliaPacino, Maria CristinaCROP MAPPINGINSAR COHERENCESAR TIME SERIEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1This work aims to evaluate the added value of interferometric coherence to backscatter information of Synthetic Aperture Radar (SAR) systems for soybean and corn mapping. First, SAR response to crop growth, and then accuracies for the classification using a combination of SAR variables were evaluated for scenarios that employ in-season or the entire season time series. Results showed that: i) using a single feature, the backscatter at vertical-horizontal (VH) polarization would be the most suitable variable; ii) the complementarity of coherence to single backscatter at vertical-vertical (VV) polarization was demonstrated, adding a significant contribution to late sown corns differentiation and iii) the combination of VV and VH backscatter would be the preferable variables for the proposed classification. In this case, the adding of coherence did not show a significant accuracy improvement, while a high computational cost is required. Finally, high general accuracies (until 90%) for early-season maps were achieved.Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Di Leo, Néstor Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Pereira, Ayelen. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Cornero, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Pacino, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaTaylor & Francis2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216964Amherdt, Sebastián; Di Leo, Néstor Cristian; Pereira, Ayelen; Cornero, Cecilia; Pacino, Maria Cristina; Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series; Taylor & Francis; Geocarto International; 11-2022; 1-231010-6049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10106049.2022.2144472info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:55Zoai:ri.conicet.gov.ar:11336/216964instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:55.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
title |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
spellingShingle |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series Amherdt, Sebastián CROP MAPPING INSAR COHERENCE SAR TIME SERIES |
title_short |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
title_full |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
title_fullStr |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
title_full_unstemmed |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
title_sort |
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series |
dc.creator.none.fl_str_mv |
Amherdt, Sebastián Di Leo, Néstor Cristian Pereira, Ayelen Cornero, Cecilia Pacino, Maria Cristina |
author |
Amherdt, Sebastián |
author_facet |
Amherdt, Sebastián Di Leo, Néstor Cristian Pereira, Ayelen Cornero, Cecilia Pacino, Maria Cristina |
author_role |
author |
author2 |
Di Leo, Néstor Cristian Pereira, Ayelen Cornero, Cecilia Pacino, Maria Cristina |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CROP MAPPING INSAR COHERENCE SAR TIME SERIES |
topic |
CROP MAPPING INSAR COHERENCE SAR TIME SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work aims to evaluate the added value of interferometric coherence to backscatter information of Synthetic Aperture Radar (SAR) systems for soybean and corn mapping. First, SAR response to crop growth, and then accuracies for the classification using a combination of SAR variables were evaluated for scenarios that employ in-season or the entire season time series. Results showed that: i) using a single feature, the backscatter at vertical-horizontal (VH) polarization would be the most suitable variable; ii) the complementarity of coherence to single backscatter at vertical-vertical (VV) polarization was demonstrated, adding a significant contribution to late sown corns differentiation and iii) the combination of VV and VH backscatter would be the preferable variables for the proposed classification. In this case, the adding of coherence did not show a significant accuracy improvement, while a high computational cost is required. Finally, high general accuracies (until 90%) for early-season maps were achieved. Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Di Leo, Néstor Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina Fil: Pereira, Ayelen. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Cornero, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Pacino, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
This work aims to evaluate the added value of interferometric coherence to backscatter information of Synthetic Aperture Radar (SAR) systems for soybean and corn mapping. First, SAR response to crop growth, and then accuracies for the classification using a combination of SAR variables were evaluated for scenarios that employ in-season or the entire season time series. Results showed that: i) using a single feature, the backscatter at vertical-horizontal (VH) polarization would be the most suitable variable; ii) the complementarity of coherence to single backscatter at vertical-vertical (VV) polarization was demonstrated, adding a significant contribution to late sown corns differentiation and iii) the combination of VV and VH backscatter would be the preferable variables for the proposed classification. In this case, the adding of coherence did not show a significant accuracy improvement, while a high computational cost is required. Finally, high general accuracies (until 90%) for early-season maps were achieved. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216964 Amherdt, Sebastián; Di Leo, Néstor Cristian; Pereira, Ayelen; Cornero, Cecilia; Pacino, Maria Cristina; Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series; Taylor & Francis; Geocarto International; 11-2022; 1-23 1010-6049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216964 |
identifier_str_mv |
Amherdt, Sebastián; Di Leo, Néstor Cristian; Pereira, Ayelen; Cornero, Cecilia; Pacino, Maria Cristina; Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series; Taylor & Francis; Geocarto International; 11-2022; 1-23 1010-6049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/10106049.2022.2144472 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613542034014208 |
score |
13.070432 |