Generalized coherence vector applied to coherence transformations and quantifiers

Autores
Bosyk, Gustavo Martin; Losada, Marcelo Adrián; Massri, Cesar Dario; Freytes Solari, Hector Carlos; Sergioli, Giuseppe
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
One of the main problems in any quantum resource theory is the characterization of the conversions between resources by means of the free operations of the theory. In this work we advance on this characterization within the quantum coherence resource theory by introducing the generalized coherence vector of an arbitrary quantum state. The generalized coherence vector is a probability vector that can be interpreted as a concave roof extension of the pure states coherence vector. We show that it completely characterizes the notions of being incoherent, as well as being maximally coherent. Moreover, using this notion and the majorization relation, we obtain a necessary condition for the conversion of general quantum states by means of incoherent operations. These results generalize the necessary conditions of conversions for pure states given in the literature, and show that the tools of the majorization lattice are useful also in the general case. Finally, we introduce a family of coherence quantifiers by considering concave and symmetric functions applied to the generalized coherence vector. We compare this proposal with the convex roof measure of coherence and others quantifiers given in the literature.
Fil: Bosyk, Gustavo Martin. Università degli Studi di Cagliari; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina
Fil: Losada, Marcelo Adrián. Università degli Studi di Cagliari; Italia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina
Fil: Freytes Solari, Hector Carlos. Università degli Studi di Cagliari; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sergioli, Giuseppe. Università degli Studi di Cagliari; Italia
Materia
Quantum coherence
Coherence measures
Resource theories
Quantum information
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/166511

id CONICETDig_e40a2fbb172470012a814b4fa8251177
oai_identifier_str oai:ri.conicet.gov.ar:11336/166511
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized coherence vector applied to coherence transformations and quantifiersBosyk, Gustavo MartinLosada, Marcelo AdriánMassri, Cesar DarioFreytes Solari, Hector CarlosSergioli, GiuseppeQuantum coherenceCoherence measuresResource theoriesQuantum informationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1One of the main problems in any quantum resource theory is the characterization of the conversions between resources by means of the free operations of the theory. In this work we advance on this characterization within the quantum coherence resource theory by introducing the generalized coherence vector of an arbitrary quantum state. The generalized coherence vector is a probability vector that can be interpreted as a concave roof extension of the pure states coherence vector. We show that it completely characterizes the notions of being incoherent, as well as being maximally coherent. Moreover, using this notion and the majorization relation, we obtain a necessary condition for the conversion of general quantum states by means of incoherent operations. These results generalize the necessary conditions of conversions for pure states given in the literature, and show that the tools of the majorization lattice are useful also in the general case. Finally, we introduce a family of coherence quantifiers by considering concave and symmetric functions applied to the generalized coherence vector. We compare this proposal with the convex roof measure of coherence and others quantifiers given in the literature.Fil: Bosyk, Gustavo Martin. Università degli Studi di Cagliari; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; ArgentinaFil: Losada, Marcelo Adrián. Università degli Studi di Cagliari; Italia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; ArgentinaFil: Freytes Solari, Hector Carlos. Università degli Studi di Cagliari; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sergioli, Giuseppe. Università degli Studi di Cagliari; ItaliaAmerican Physical Society2021-01-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166511Bosyk, Gustavo Martin; Losada, Marcelo Adrián; Massri, Cesar Dario; Freytes Solari, Hector Carlos; Sergioli, Giuseppe; Generalized coherence vector applied to coherence transformations and quantifiers; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 1; 11-1-2021; 12403 1 - 12403 142469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.103.012403info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.012403info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:13Zoai:ri.conicet.gov.ar:11336/166511instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:14.328CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized coherence vector applied to coherence transformations and quantifiers
title Generalized coherence vector applied to coherence transformations and quantifiers
spellingShingle Generalized coherence vector applied to coherence transformations and quantifiers
Bosyk, Gustavo Martin
Quantum coherence
Coherence measures
Resource theories
Quantum information
title_short Generalized coherence vector applied to coherence transformations and quantifiers
title_full Generalized coherence vector applied to coherence transformations and quantifiers
title_fullStr Generalized coherence vector applied to coherence transformations and quantifiers
title_full_unstemmed Generalized coherence vector applied to coherence transformations and quantifiers
title_sort Generalized coherence vector applied to coherence transformations and quantifiers
dc.creator.none.fl_str_mv Bosyk, Gustavo Martin
Losada, Marcelo Adrián
Massri, Cesar Dario
Freytes Solari, Hector Carlos
Sergioli, Giuseppe
author Bosyk, Gustavo Martin
author_facet Bosyk, Gustavo Martin
Losada, Marcelo Adrián
Massri, Cesar Dario
Freytes Solari, Hector Carlos
Sergioli, Giuseppe
author_role author
author2 Losada, Marcelo Adrián
Massri, Cesar Dario
Freytes Solari, Hector Carlos
Sergioli, Giuseppe
author2_role author
author
author
author
dc.subject.none.fl_str_mv Quantum coherence
Coherence measures
Resource theories
Quantum information
topic Quantum coherence
Coherence measures
Resource theories
Quantum information
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv One of the main problems in any quantum resource theory is the characterization of the conversions between resources by means of the free operations of the theory. In this work we advance on this characterization within the quantum coherence resource theory by introducing the generalized coherence vector of an arbitrary quantum state. The generalized coherence vector is a probability vector that can be interpreted as a concave roof extension of the pure states coherence vector. We show that it completely characterizes the notions of being incoherent, as well as being maximally coherent. Moreover, using this notion and the majorization relation, we obtain a necessary condition for the conversion of general quantum states by means of incoherent operations. These results generalize the necessary conditions of conversions for pure states given in the literature, and show that the tools of the majorization lattice are useful also in the general case. Finally, we introduce a family of coherence quantifiers by considering concave and symmetric functions applied to the generalized coherence vector. We compare this proposal with the convex roof measure of coherence and others quantifiers given in the literature.
Fil: Bosyk, Gustavo Martin. Università degli Studi di Cagliari; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina
Fil: Losada, Marcelo Adrián. Università degli Studi di Cagliari; Italia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina
Fil: Freytes Solari, Hector Carlos. Università degli Studi di Cagliari; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sergioli, Giuseppe. Università degli Studi di Cagliari; Italia
description One of the main problems in any quantum resource theory is the characterization of the conversions between resources by means of the free operations of the theory. In this work we advance on this characterization within the quantum coherence resource theory by introducing the generalized coherence vector of an arbitrary quantum state. The generalized coherence vector is a probability vector that can be interpreted as a concave roof extension of the pure states coherence vector. We show that it completely characterizes the notions of being incoherent, as well as being maximally coherent. Moreover, using this notion and the majorization relation, we obtain a necessary condition for the conversion of general quantum states by means of incoherent operations. These results generalize the necessary conditions of conversions for pure states given in the literature, and show that the tools of the majorization lattice are useful also in the general case. Finally, we introduce a family of coherence quantifiers by considering concave and symmetric functions applied to the generalized coherence vector. We compare this proposal with the convex roof measure of coherence and others quantifiers given in the literature.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/166511
Bosyk, Gustavo Martin; Losada, Marcelo Adrián; Massri, Cesar Dario; Freytes Solari, Hector Carlos; Sergioli, Giuseppe; Generalized coherence vector applied to coherence transformations and quantifiers; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 1; 11-1-2021; 12403 1 - 12403 14
2469-9926
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/166511
identifier_str_mv Bosyk, Gustavo Martin; Losada, Marcelo Adrián; Massri, Cesar Dario; Freytes Solari, Hector Carlos; Sergioli, Giuseppe; Generalized coherence vector applied to coherence transformations and quantifiers; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 1; 11-1-2021; 12403 1 - 12403 14
2469-9926
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.103.012403
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.012403
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270036502249472
score 13.13397