Revisiting the secotioid and gasteroid Cortinarius species from Patagonia
- Autores
- Nouhra, Eduardo Ramon; Kuhar, José Francisco; Truong, Camille; Mujic, Alija; Healy, R.; Smith, M. E.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The diversity of secotioid taxa within Cortinarius in the Nothofagaceae forests of Patagonia has drawn attention of mycologists during the last century. In the Patagonian region of Argentina and Chile Cortinarius is among the most diverse and abundant genera of ectomycorrhizal fungi with at least 240 species from the Andean mountains. Secotioid and gasteroid forms were until recently considered primarily within Thaxterogaster, resulting in a confusing intrageneric classification system. Moser and Horak suggested that Thaxterogaster was nested within Cortinarius. The modern molecular analysis of Peintner et al. investigated the multiple origins of sequestrate taxa related to Cortinarius and consequently synonymized Thaxterogaster to Cortinarius. Subsequent molecular phylogenies have resolved the polyphyletic nature of Thaxterogaster and other "cortinarioid" taxa within Cortinarius but have also highlighted the fact that most sequestrate Patagonian taxa lack molecular data. Original descriptions of these fungi are available mostly in German and Spanish and the interpretations of morphological structures are outdated considering the current state of knowledge about sporemorphology and ontogeny. For example, verrucae on spores were illustrated as globose structures whereas SEM shows that they are complex conical structures that are sometimes interconnected by reticula or sub-reticula. External walls or episporia were sometimes pictured in original descriptions but our analyses suggest that these may have been optical illusions due to non-DIC microscopy. Recently, the incorrect interpretation of this episporium in the "cortinariod" fungi was found to be a misleading character. Despite recent advances in Cortinarius systematics, the current classification, diversity andecology of secotioid and hypogeous "cortinarioid" fungi in the Nothofagaceae forests of southern South America remains unclear. The objective of this study is to update descriptions with diagnostic characters, including color photos of basidiomata, SEM images of spores, and ITS sequence data to clarify the biodiversity of these fungi in Patagonia. Original descriptions of secotioid and gasteroid taxa were also revised and translated to English. Our analyses based on SEM and ITS rDNA resolves at least 15 species with names that need to be considered as synonyms. The use of these tools combined with an extensive database of described species also facilitated the recognition of several new and undescribed Patagonian species. Analysis of spore ultrastructure across many specimens clearly shows that sequestrate species of Cortinarius always lack a perisporium. It also indicates that there is a transition process in shape and ornamentation that occurs in taxa as they switch from ballistosporic tostatimosporic spore dispersal.
Fil: Nouhra, Eduardo Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Kuhar, José Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina
Fil: Truong, Camille. Universidad Nacional Autónoma de México; México
Fil: Mujic, Alija. University of Florida; Estados Unidos
Fil: Healy, R.. University of Florida; Estados Unidos
Fil: Smith, M. E.. University of Florida; Estados Unidos
11th International Mycological Congress: Mycological Discoveries for a Better World
San Juan de Puerto Rico
Puerto Rico
International Mycological Association
Mycological Society of America - Materia
-
Thaxterogaster
Patagonia
ITS
Secotioid - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215432
Ver los metadatos del registro completo
id |
CONICETDig_76fd43c1e3c61163d5187912b8904ec4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215432 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Revisiting the secotioid and gasteroid Cortinarius species from PatagoniaNouhra, Eduardo RamonKuhar, José FranciscoTruong, CamilleMujic, AlijaHealy, R.Smith, M. E.ThaxterogasterPatagoniaITSSecotioidhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The diversity of secotioid taxa within Cortinarius in the Nothofagaceae forests of Patagonia has drawn attention of mycologists during the last century. In the Patagonian region of Argentina and Chile Cortinarius is among the most diverse and abundant genera of ectomycorrhizal fungi with at least 240 species from the Andean mountains. Secotioid and gasteroid forms were until recently considered primarily within Thaxterogaster, resulting in a confusing intrageneric classification system. Moser and Horak suggested that Thaxterogaster was nested within Cortinarius. The modern molecular analysis of Peintner et al. investigated the multiple origins of sequestrate taxa related to Cortinarius and consequently synonymized Thaxterogaster to Cortinarius. Subsequent molecular phylogenies have resolved the polyphyletic nature of Thaxterogaster and other "cortinarioid" taxa within Cortinarius but have also highlighted the fact that most sequestrate Patagonian taxa lack molecular data. Original descriptions of these fungi are available mostly in German and Spanish and the interpretations of morphological structures are outdated considering the current state of knowledge about sporemorphology and ontogeny. For example, verrucae on spores were illustrated as globose structures whereas SEM shows that they are complex conical structures that are sometimes interconnected by reticula or sub-reticula. External walls or episporia were sometimes pictured in original descriptions but our analyses suggest that these may have been optical illusions due to non-DIC microscopy. Recently, the incorrect interpretation of this episporium in the "cortinariod" fungi was found to be a misleading character. Despite recent advances in Cortinarius systematics, the current classification, diversity andecology of secotioid and hypogeous "cortinarioid" fungi in the Nothofagaceae forests of southern South America remains unclear. The objective of this study is to update descriptions with diagnostic characters, including color photos of basidiomata, SEM images of spores, and ITS sequence data to clarify the biodiversity of these fungi in Patagonia. Original descriptions of secotioid and gasteroid taxa were also revised and translated to English. Our analyses based on SEM and ITS rDNA resolves at least 15 species with names that need to be considered as synonyms. The use of these tools combined with an extensive database of described species also facilitated the recognition of several new and undescribed Patagonian species. Analysis of spore ultrastructure across many specimens clearly shows that sequestrate species of Cortinarius always lack a perisporium. It also indicates that there is a transition process in shape and ornamentation that occurs in taxa as they switch from ballistosporic tostatimosporic spore dispersal.Fil: Nouhra, Eduardo Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Kuhar, José Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Truong, Camille. Universidad Nacional Autónoma de México; MéxicoFil: Mujic, Alija. University of Florida; Estados UnidosFil: Healy, R.. University of Florida; Estados UnidosFil: Smith, M. E.. University of Florida; Estados Unidos11th International Mycological Congress: Mycological Discoveries for a Better WorldSan Juan de Puerto RicoPuerto RicoInternational Mycological AssociationMycological Society of AmericaMycological Society of America2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfhttp://hdl.handle.net/11336/215432Revisiting the secotioid and gasteroid Cortinarius species from Patagonia; 11th International Mycological Congress: Mycological Discoveries for a Better World; San Juan de Puerto Rico; Puerto Rico; 2018; 439-439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.britmycolsoc.org.uk/application/files/7215/3659/4574/IMC11_-_Programme_and_abstracts.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:41Zoai:ri.conicet.gov.ar:11336/215432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:42.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
title |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
spellingShingle |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia Nouhra, Eduardo Ramon Thaxterogaster Patagonia ITS Secotioid |
title_short |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
title_full |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
title_fullStr |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
title_full_unstemmed |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
title_sort |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia |
dc.creator.none.fl_str_mv |
Nouhra, Eduardo Ramon Kuhar, José Francisco Truong, Camille Mujic, Alija Healy, R. Smith, M. E. |
author |
Nouhra, Eduardo Ramon |
author_facet |
Nouhra, Eduardo Ramon Kuhar, José Francisco Truong, Camille Mujic, Alija Healy, R. Smith, M. E. |
author_role |
author |
author2 |
Kuhar, José Francisco Truong, Camille Mujic, Alija Healy, R. Smith, M. E. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Thaxterogaster Patagonia ITS Secotioid |
topic |
Thaxterogaster Patagonia ITS Secotioid |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The diversity of secotioid taxa within Cortinarius in the Nothofagaceae forests of Patagonia has drawn attention of mycologists during the last century. In the Patagonian region of Argentina and Chile Cortinarius is among the most diverse and abundant genera of ectomycorrhizal fungi with at least 240 species from the Andean mountains. Secotioid and gasteroid forms were until recently considered primarily within Thaxterogaster, resulting in a confusing intrageneric classification system. Moser and Horak suggested that Thaxterogaster was nested within Cortinarius. The modern molecular analysis of Peintner et al. investigated the multiple origins of sequestrate taxa related to Cortinarius and consequently synonymized Thaxterogaster to Cortinarius. Subsequent molecular phylogenies have resolved the polyphyletic nature of Thaxterogaster and other "cortinarioid" taxa within Cortinarius but have also highlighted the fact that most sequestrate Patagonian taxa lack molecular data. Original descriptions of these fungi are available mostly in German and Spanish and the interpretations of morphological structures are outdated considering the current state of knowledge about sporemorphology and ontogeny. For example, verrucae on spores were illustrated as globose structures whereas SEM shows that they are complex conical structures that are sometimes interconnected by reticula or sub-reticula. External walls or episporia were sometimes pictured in original descriptions but our analyses suggest that these may have been optical illusions due to non-DIC microscopy. Recently, the incorrect interpretation of this episporium in the "cortinariod" fungi was found to be a misleading character. Despite recent advances in Cortinarius systematics, the current classification, diversity andecology of secotioid and hypogeous "cortinarioid" fungi in the Nothofagaceae forests of southern South America remains unclear. The objective of this study is to update descriptions with diagnostic characters, including color photos of basidiomata, SEM images of spores, and ITS sequence data to clarify the biodiversity of these fungi in Patagonia. Original descriptions of secotioid and gasteroid taxa were also revised and translated to English. Our analyses based on SEM and ITS rDNA resolves at least 15 species with names that need to be considered as synonyms. The use of these tools combined with an extensive database of described species also facilitated the recognition of several new and undescribed Patagonian species. Analysis of spore ultrastructure across many specimens clearly shows that sequestrate species of Cortinarius always lack a perisporium. It also indicates that there is a transition process in shape and ornamentation that occurs in taxa as they switch from ballistosporic tostatimosporic spore dispersal. Fil: Nouhra, Eduardo Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Kuhar, José Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Provincia del Chubut. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina Fil: Truong, Camille. Universidad Nacional Autónoma de México; México Fil: Mujic, Alija. University of Florida; Estados Unidos Fil: Healy, R.. University of Florida; Estados Unidos Fil: Smith, M. E.. University of Florida; Estados Unidos 11th International Mycological Congress: Mycological Discoveries for a Better World San Juan de Puerto Rico Puerto Rico International Mycological Association Mycological Society of America |
description |
The diversity of secotioid taxa within Cortinarius in the Nothofagaceae forests of Patagonia has drawn attention of mycologists during the last century. In the Patagonian region of Argentina and Chile Cortinarius is among the most diverse and abundant genera of ectomycorrhizal fungi with at least 240 species from the Andean mountains. Secotioid and gasteroid forms were until recently considered primarily within Thaxterogaster, resulting in a confusing intrageneric classification system. Moser and Horak suggested that Thaxterogaster was nested within Cortinarius. The modern molecular analysis of Peintner et al. investigated the multiple origins of sequestrate taxa related to Cortinarius and consequently synonymized Thaxterogaster to Cortinarius. Subsequent molecular phylogenies have resolved the polyphyletic nature of Thaxterogaster and other "cortinarioid" taxa within Cortinarius but have also highlighted the fact that most sequestrate Patagonian taxa lack molecular data. Original descriptions of these fungi are available mostly in German and Spanish and the interpretations of morphological structures are outdated considering the current state of knowledge about sporemorphology and ontogeny. For example, verrucae on spores were illustrated as globose structures whereas SEM shows that they are complex conical structures that are sometimes interconnected by reticula or sub-reticula. External walls or episporia were sometimes pictured in original descriptions but our analyses suggest that these may have been optical illusions due to non-DIC microscopy. Recently, the incorrect interpretation of this episporium in the "cortinariod" fungi was found to be a misleading character. Despite recent advances in Cortinarius systematics, the current classification, diversity andecology of secotioid and hypogeous "cortinarioid" fungi in the Nothofagaceae forests of southern South America remains unclear. The objective of this study is to update descriptions with diagnostic characters, including color photos of basidiomata, SEM images of spores, and ITS sequence data to clarify the biodiversity of these fungi in Patagonia. Original descriptions of secotioid and gasteroid taxa were also revised and translated to English. Our analyses based on SEM and ITS rDNA resolves at least 15 species with names that need to be considered as synonyms. The use of these tools combined with an extensive database of described species also facilitated the recognition of several new and undescribed Patagonian species. Analysis of spore ultrastructure across many specimens clearly shows that sequestrate species of Cortinarius always lack a perisporium. It also indicates that there is a transition process in shape and ornamentation that occurs in taxa as they switch from ballistosporic tostatimosporic spore dispersal. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215432 Revisiting the secotioid and gasteroid Cortinarius species from Patagonia; 11th International Mycological Congress: Mycological Discoveries for a Better World; San Juan de Puerto Rico; Puerto Rico; 2018; 439-439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215432 |
identifier_str_mv |
Revisiting the secotioid and gasteroid Cortinarius species from Patagonia; 11th International Mycological Congress: Mycological Discoveries for a Better World; San Juan de Puerto Rico; Puerto Rico; 2018; 439-439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.britmycolsoc.org.uk/application/files/7215/3659/4574/IMC11_-_Programme_and_abstracts.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/vnd.openxmlformats-officedocument.wordprocessingml.document application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Mycological Society of America |
publisher.none.fl_str_mv |
Mycological Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613637884346368 |
score |
13.070432 |