Lagrangian descriptors for open maps

Autores
Carlo, Gabriel Gustavo; Borondo, F.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We adapt the concept of Lagrangian descriptors, which have been recently introduced as efficient indicators of phase space structures in chaotic systems, to unveil the key features of open maps. We apply them to the open tribaker map, a paradigmatic example not only in classical but also in quantum chaos. Our definition allows us to identify in a very simple way the inner structure of the chaotic repeller, which is the fundamental invariant set that governs the dynamics of this system. The homoclinic tangles of periodic orbits (POs) that belong to this set are clearly found. This could also have important consequences for chaotic scattering and in the development of the semiclassical theory of short POs for open systems.
Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Borondo, F.. Instituto de Ciencias Matemáticas; España. Universidad Autónoma de Madrid; España
Materia
Chaos
Phase space representations
Periodic orbits
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/168201

id CONICETDig_76b265fbde5f297765d6f7b29a81e1cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/168201
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lagrangian descriptors for open mapsCarlo, Gabriel GustavoBorondo, F.ChaosPhase space representationsPeriodic orbitshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We adapt the concept of Lagrangian descriptors, which have been recently introduced as efficient indicators of phase space structures in chaotic systems, to unveil the key features of open maps. We apply them to the open tribaker map, a paradigmatic example not only in classical but also in quantum chaos. Our definition allows us to identify in a very simple way the inner structure of the chaotic repeller, which is the fundamental invariant set that governs the dynamics of this system. The homoclinic tangles of periodic orbits (POs) that belong to this set are clearly found. This could also have important consequences for chaotic scattering and in the development of the semiclassical theory of short POs for open systems.Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Borondo, F.. Instituto de Ciencias Matemáticas; España. Universidad Autónoma de Madrid; EspañaAmerican Physical Society2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168201Carlo, Gabriel Gustavo; Borondo, F.; Lagrangian descriptors for open maps; American Physical Society; Physical Review E; 101; 2; 2-2020; 1-72470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.101.022208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:19Zoai:ri.conicet.gov.ar:11336/168201instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:19.83CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lagrangian descriptors for open maps
title Lagrangian descriptors for open maps
spellingShingle Lagrangian descriptors for open maps
Carlo, Gabriel Gustavo
Chaos
Phase space representations
Periodic orbits
title_short Lagrangian descriptors for open maps
title_full Lagrangian descriptors for open maps
title_fullStr Lagrangian descriptors for open maps
title_full_unstemmed Lagrangian descriptors for open maps
title_sort Lagrangian descriptors for open maps
dc.creator.none.fl_str_mv Carlo, Gabriel Gustavo
Borondo, F.
author Carlo, Gabriel Gustavo
author_facet Carlo, Gabriel Gustavo
Borondo, F.
author_role author
author2 Borondo, F.
author2_role author
dc.subject.none.fl_str_mv Chaos
Phase space representations
Periodic orbits
topic Chaos
Phase space representations
Periodic orbits
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We adapt the concept of Lagrangian descriptors, which have been recently introduced as efficient indicators of phase space structures in chaotic systems, to unveil the key features of open maps. We apply them to the open tribaker map, a paradigmatic example not only in classical but also in quantum chaos. Our definition allows us to identify in a very simple way the inner structure of the chaotic repeller, which is the fundamental invariant set that governs the dynamics of this system. The homoclinic tangles of periodic orbits (POs) that belong to this set are clearly found. This could also have important consequences for chaotic scattering and in the development of the semiclassical theory of short POs for open systems.
Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Borondo, F.. Instituto de Ciencias Matemáticas; España. Universidad Autónoma de Madrid; España
description We adapt the concept of Lagrangian descriptors, which have been recently introduced as efficient indicators of phase space structures in chaotic systems, to unveil the key features of open maps. We apply them to the open tribaker map, a paradigmatic example not only in classical but also in quantum chaos. Our definition allows us to identify in a very simple way the inner structure of the chaotic repeller, which is the fundamental invariant set that governs the dynamics of this system. The homoclinic tangles of periodic orbits (POs) that belong to this set are clearly found. This could also have important consequences for chaotic scattering and in the development of the semiclassical theory of short POs for open systems.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/168201
Carlo, Gabriel Gustavo; Borondo, F.; Lagrangian descriptors for open maps; American Physical Society; Physical Review E; 101; 2; 2-2020; 1-7
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/168201
identifier_str_mv Carlo, Gabriel Gustavo; Borondo, F.; Lagrangian descriptors for open maps; American Physical Society; Physical Review E; 101; 2; 2-2020; 1-7
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.101.022208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614383471165440
score 13.069144