The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study

Autores
Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.
Fil: Ferrer, M. Luisa. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Duchowicz, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Consejo Superior de Investigaciones Científicas; España
Fil: Carrasco, Beatriz. Universidad de Murcia. Facultad de Química; España
Fil: de la Torre, José García. Universidad de Murcia. Facultad de Química; España
Fil: Acuña, A. Ulises. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Materia
Phosphorescence
Depolarization Analysis
Serum Albumin
Molecular Conformation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/155506

id CONICETDig_7637ac57321cdb403ca27b7628876b5f
oai_identifier_str oai:ri.conicet.gov.ar:11336/155506
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling studyFerrer, M. LuisaDuchowicz, RicardoCarrasco, Beatrizde la Torre, José GarcíaAcuña, A. UlisesPhosphorescenceDepolarization AnalysisSerum AlbuminMolecular Conformationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.Fil: Ferrer, M. Luisa. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Duchowicz, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Carrasco, Beatriz. Universidad de Murcia. Facultad de Química; EspañaFil: de la Torre, José García. Universidad de Murcia. Facultad de Química; EspañaFil: Acuña, A. Ulises. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaCell Press2001-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155506Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises; The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study; Cell Press; Biophysical Journal; 80; 5; 5-2001; 2422-24300006-34951542-0086CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0006-3495(01)76211-Xinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000634950176211Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:03Zoai:ri.conicet.gov.ar:11336/155506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:04.046CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
title The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
spellingShingle The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
Ferrer, M. Luisa
Phosphorescence
Depolarization Analysis
Serum Albumin
Molecular Conformation
title_short The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
title_full The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
title_fullStr The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
title_full_unstemmed The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
title_sort The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
dc.creator.none.fl_str_mv Ferrer, M. Luisa
Duchowicz, Ricardo
Carrasco, Beatriz
de la Torre, José García
Acuña, A. Ulises
author Ferrer, M. Luisa
author_facet Ferrer, M. Luisa
Duchowicz, Ricardo
Carrasco, Beatriz
de la Torre, José García
Acuña, A. Ulises
author_role author
author2 Duchowicz, Ricardo
Carrasco, Beatriz
de la Torre, José García
Acuña, A. Ulises
author2_role author
author
author
author
dc.subject.none.fl_str_mv Phosphorescence
Depolarization Analysis
Serum Albumin
Molecular Conformation
topic Phosphorescence
Depolarization Analysis
Serum Albumin
Molecular Conformation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.
Fil: Ferrer, M. Luisa. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Duchowicz, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Consejo Superior de Investigaciones Científicas; España
Fil: Carrasco, Beatriz. Universidad de Murcia. Facultad de Química; España
Fil: de la Torre, José García. Universidad de Murcia. Facultad de Química; España
Fil: Acuña, A. Ulises. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
description There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.
publishDate 2001
dc.date.none.fl_str_mv 2001-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/155506
Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises; The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study; Cell Press; Biophysical Journal; 80; 5; 5-2001; 2422-2430
0006-3495
1542-0086
CONICET Digital
CONICET
url http://hdl.handle.net/11336/155506
identifier_str_mv Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises; The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study; Cell Press; Biophysical Journal; 80; 5; 5-2001; 2422-2430
0006-3495
1542-0086
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0006-3495(01)76211-X
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000634950176211X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cell Press
publisher.none.fl_str_mv Cell Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614272536018944
score 13.070432