The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study
- Autores
- Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.
Fil: Ferrer, M. Luisa. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Duchowicz, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Consejo Superior de Investigaciones Científicas; España
Fil: Carrasco, Beatriz. Universidad de Murcia. Facultad de Química; España
Fil: de la Torre, José García. Universidad de Murcia. Facultad de Química; España
Fil: Acuña, A. Ulises. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España - Materia
-
Phosphorescence
Depolarization Analysis
Serum Albumin
Molecular Conformation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155506
Ver los metadatos del registro completo
id |
CONICETDig_7637ac57321cdb403ca27b7628876b5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155506 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling studyFerrer, M. LuisaDuchowicz, RicardoCarrasco, Beatrizde la Torre, José GarcíaAcuña, A. UlisesPhosphorescenceDepolarization AnalysisSerum AlbuminMolecular Conformationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.Fil: Ferrer, M. Luisa. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Duchowicz, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Carrasco, Beatriz. Universidad de Murcia. Facultad de Química; EspañaFil: de la Torre, José García. Universidad de Murcia. Facultad de Química; EspañaFil: Acuña, A. Ulises. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaCell Press2001-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155506Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises; The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study; Cell Press; Biophysical Journal; 80; 5; 5-2001; 2422-24300006-34951542-0086CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0006-3495(01)76211-Xinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000634950176211Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:03Zoai:ri.conicet.gov.ar:11336/155506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:04.046CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
title |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
spellingShingle |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study Ferrer, M. Luisa Phosphorescence Depolarization Analysis Serum Albumin Molecular Conformation |
title_short |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
title_full |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
title_fullStr |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
title_full_unstemmed |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
title_sort |
The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study |
dc.creator.none.fl_str_mv |
Ferrer, M. Luisa Duchowicz, Ricardo Carrasco, Beatriz de la Torre, José García Acuña, A. Ulises |
author |
Ferrer, M. Luisa |
author_facet |
Ferrer, M. Luisa Duchowicz, Ricardo Carrasco, Beatriz de la Torre, José García Acuña, A. Ulises |
author_role |
author |
author2 |
Duchowicz, Ricardo Carrasco, Beatriz de la Torre, José García Acuña, A. Ulises |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Phosphorescence Depolarization Analysis Serum Albumin Molecular Conformation |
topic |
Phosphorescence Depolarization Analysis Serum Albumin Molecular Conformation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals. Fil: Ferrer, M. Luisa. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España Fil: Duchowicz, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Consejo Superior de Investigaciones Científicas; España Fil: Carrasco, Beatriz. Universidad de Murcia. Facultad de Química; España Fil: de la Torre, José García. Universidad de Murcia. Facultad de Química; España Fil: Acuña, A. Ulises. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España |
description |
There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosinbovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time f(BSA, 1 cP, 20°C) 5 40 6 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 3 84 3 84 3 31.5 Å, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155506 Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises; The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study; Cell Press; Biophysical Journal; 80; 5; 5-2001; 2422-2430 0006-3495 1542-0086 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155506 |
identifier_str_mv |
Ferrer, M. Luisa; Duchowicz, Ricardo; Carrasco, Beatriz; de la Torre, José García; Acuña, A. Ulises; The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study; Cell Press; Biophysical Journal; 80; 5; 5-2001; 2422-2430 0006-3495 1542-0086 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0006-3495(01)76211-X info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000634950176211X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cell Press |
publisher.none.fl_str_mv |
Cell Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614272536018944 |
score |
13.070432 |