Sampling and reconstruction by means of weighted inverses
- Autores
- Arias, Maria Laura; Gonzalez, Maria Celeste
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we address the problem of reconstructing an element in a Hilbert space from its samples by means of a weighted least square approximation. We show how this problem is linked with the notions of weighted inverses, weighted projections and an angle condition known as compatibility. In addition, we study perfect reconstruction operators and their relationship with the previous problem. Finally, since the reconstructions through these approaches may not be unique, we propose different criteria for choosing an optimal one among all of them.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Gonzalez, Maria Celeste. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
SAMPLING PROBLEMS
PERFECT RECONSTRUCTIONS
WEIGHTED INVERSES - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108158
Ver los metadatos del registro completo
id |
CONICETDig_75bbd1aaf80595303114129dcd9a394d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108158 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sampling and reconstruction by means of weighted inversesArias, Maria LauraGonzalez, Maria CelesteSAMPLING PROBLEMSPERFECT RECONSTRUCTIONSWEIGHTED INVERSEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we address the problem of reconstructing an element in a Hilbert space from its samples by means of a weighted least square approximation. We show how this problem is linked with the notions of weighted inverses, weighted projections and an angle condition known as compatibility. In addition, we study perfect reconstruction operators and their relationship with the previous problem. Finally, since the reconstructions through these approaches may not be unique, we propose different criteria for choosing an optimal one among all of them.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Gonzalez, Maria Celeste. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2020-06info:eu-repo/date/embargoEnd/2020-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108158Arias, Maria Laura; Gonzalez, Maria Celeste; Sampling and reconstruction by means of weighted inverses; Springer; Journal Of Fourier Analysis And Applications; 26; 3; 6-2020; 1-261069-58691531-5851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00041-020-09747-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-020-09747-5info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:24:46Zoai:ri.conicet.gov.ar:11336/108158instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:24:46.394CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sampling and reconstruction by means of weighted inverses |
title |
Sampling and reconstruction by means of weighted inverses |
spellingShingle |
Sampling and reconstruction by means of weighted inverses Arias, Maria Laura SAMPLING PROBLEMS PERFECT RECONSTRUCTIONS WEIGHTED INVERSES |
title_short |
Sampling and reconstruction by means of weighted inverses |
title_full |
Sampling and reconstruction by means of weighted inverses |
title_fullStr |
Sampling and reconstruction by means of weighted inverses |
title_full_unstemmed |
Sampling and reconstruction by means of weighted inverses |
title_sort |
Sampling and reconstruction by means of weighted inverses |
dc.creator.none.fl_str_mv |
Arias, Maria Laura Gonzalez, Maria Celeste |
author |
Arias, Maria Laura |
author_facet |
Arias, Maria Laura Gonzalez, Maria Celeste |
author_role |
author |
author2 |
Gonzalez, Maria Celeste |
author2_role |
author |
dc.subject.none.fl_str_mv |
SAMPLING PROBLEMS PERFECT RECONSTRUCTIONS WEIGHTED INVERSES |
topic |
SAMPLING PROBLEMS PERFECT RECONSTRUCTIONS WEIGHTED INVERSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, we address the problem of reconstructing an element in a Hilbert space from its samples by means of a weighted least square approximation. We show how this problem is linked with the notions of weighted inverses, weighted projections and an angle condition known as compatibility. In addition, we study perfect reconstruction operators and their relationship with the previous problem. Finally, since the reconstructions through these approaches may not be unique, we propose different criteria for choosing an optimal one among all of them. Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Gonzalez, Maria Celeste. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
In this article, we address the problem of reconstructing an element in a Hilbert space from its samples by means of a weighted least square approximation. We show how this problem is linked with the notions of weighted inverses, weighted projections and an angle condition known as compatibility. In addition, we study perfect reconstruction operators and their relationship with the previous problem. Finally, since the reconstructions through these approaches may not be unique, we propose different criteria for choosing an optimal one among all of them. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 info:eu-repo/date/embargoEnd/2020-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108158 Arias, Maria Laura; Gonzalez, Maria Celeste; Sampling and reconstruction by means of weighted inverses; Springer; Journal Of Fourier Analysis And Applications; 26; 3; 6-2020; 1-26 1069-5869 1531-5851 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108158 |
identifier_str_mv |
Arias, Maria Laura; Gonzalez, Maria Celeste; Sampling and reconstruction by means of weighted inverses; Springer; Journal Of Fourier Analysis And Applications; 26; 3; 6-2020; 1-26 1069-5869 1531-5851 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00041-020-09747-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-020-09747-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083393760002048 |
score |
13.22299 |