Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks
- Autores
- Freixas Lemus, Victor Manuel; Ondarse Alvarez, Dianelys; Tretiak, Sergei; Makhov, D.V.; D. V. Shalashilin; Fernández Alberti, Sebastián
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales.
Fil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unidos
Fil: Makhov, D.V.. University Of Leeds; Reino Unido
Fil: D. V. Shalashilin. University Of Leeds; Reino Unido
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DYNAMICS
EHRENFEST
CLONING
POLYMERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/118322
Ver los metadatos del registro completo
id |
CONICETDig_758e940d359fdec87d431593b7fe6e32 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/118322 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocksFreixas Lemus, Victor ManuelOndarse Alvarez, DianelysTretiak, SergeiMakhov, D.V.D. V. ShalashilinFernández Alberti, SebastiánDYNAMICSEHRENFESTCLONINGPOLYMERShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales.Fil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados UnidosFil: Makhov, D.V.. University Of Leeds; Reino UnidoFil: D. V. Shalashilin. University Of Leeds; Reino UnidoFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Institute of Physics2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118322Freixas Lemus, Victor Manuel; Ondarse Alvarez, Dianelys; Tretiak, Sergei; Makhov, D.V.; D. V. Shalashilin; et al.; Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks; American Institute of Physics; Journal of Chemical Physics; 150; 12; 3-2019; 1-110021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5086680info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5086680info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:38Zoai:ri.conicet.gov.ar:11336/118322instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:38.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
title |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
spellingShingle |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks Freixas Lemus, Victor Manuel DYNAMICS EHRENFEST CLONING POLYMERS |
title_short |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
title_full |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
title_fullStr |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
title_full_unstemmed |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
title_sort |
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks |
dc.creator.none.fl_str_mv |
Freixas Lemus, Victor Manuel Ondarse Alvarez, Dianelys Tretiak, Sergei Makhov, D.V. D. V. Shalashilin Fernández Alberti, Sebastián |
author |
Freixas Lemus, Victor Manuel |
author_facet |
Freixas Lemus, Victor Manuel Ondarse Alvarez, Dianelys Tretiak, Sergei Makhov, D.V. D. V. Shalashilin Fernández Alberti, Sebastián |
author_role |
author |
author2 |
Ondarse Alvarez, Dianelys Tretiak, Sergei Makhov, D.V. D. V. Shalashilin Fernández Alberti, Sebastián |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DYNAMICS EHRENFEST CLONING POLYMERS |
topic |
DYNAMICS EHRENFEST CLONING POLYMERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales. Fil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unidos Fil: Makhov, D.V.. University Of Leeds; Reino Unido Fil: D. V. Shalashilin. University Of Leeds; Reino Unido Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/118322 Freixas Lemus, Victor Manuel; Ondarse Alvarez, Dianelys; Tretiak, Sergei; Makhov, D.V.; D. V. Shalashilin; et al.; Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks; American Institute of Physics; Journal of Chemical Physics; 150; 12; 3-2019; 1-11 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/118322 |
identifier_str_mv |
Freixas Lemus, Victor Manuel; Ondarse Alvarez, Dianelys; Tretiak, Sergei; Makhov, D.V.; D. V. Shalashilin; et al.; Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks; American Institute of Physics; Journal of Chemical Physics; 150; 12; 3-2019; 1-11 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5086680 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5086680 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270128301932544 |
score |
13.13397 |