Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations

Autores
Galindo Cruz, Johan Fabian; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; Tretiak, Sergei; Roitberg, Adrián; Kleiman, Valeria D.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.
Fil: Galindo Cruz, Johan Fabian. University of Florida; Estados Unidos. Universidad Nacional de Colombia; Colombia
Fil: Atas, Evrim. University of Florida; Estados Unidos
Fil: Altan, Aysun. No especifica;
Fil: Kuroda, Daniel G.. State University of Louisiana; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Kleiman, Valeria D.. University of Florida; Estados Unidos
Materia
Excited Sttes
Ultrafast Dynamics
Dendrimers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41554

id CONICETDig_1dee16c777a3b362eabbdc2de0a97c59
oai_identifier_str oai:ri.conicet.gov.ar:11336/41554
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of ExcitationsGalindo Cruz, Johan FabianAtas, EvrimAltan, AysunKuroda, Daniel G.Fernández Alberti, SebastiánTretiak, SergeiRoitberg, AdriánKleiman, Valeria D.Excited SttesUltrafast DynamicsDendrimershttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.Fil: Galindo Cruz, Johan Fabian. University of Florida; Estados Unidos. Universidad Nacional de Colombia; ColombiaFil: Atas, Evrim. University of Florida; Estados UnidosFil: Altan, Aysun. No especifica;Fil: Kuroda, Daniel G.. State University of Louisiana; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Kleiman, Valeria D.. University of Florida; Estados UnidosAmerican Chemical Society2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41554Galindo Cruz, Johan Fabian; Atas, Evrim ; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; et al.; Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations; American Chemical Society; Journal of the American Chemical Society; 137; 36; 6-2015; 11637-116440002-7863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.5b04075info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.5b04075info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:22Zoai:ri.conicet.gov.ar:11336/41554instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:22.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
title Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
spellingShingle Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
Galindo Cruz, Johan Fabian
Excited Sttes
Ultrafast Dynamics
Dendrimers
title_short Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
title_full Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
title_fullStr Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
title_full_unstemmed Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
title_sort Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
dc.creator.none.fl_str_mv Galindo Cruz, Johan Fabian
Atas, Evrim
Altan, Aysun
Kuroda, Daniel G.
Fernández Alberti, Sebastián
Tretiak, Sergei
Roitberg, Adrián
Kleiman, Valeria D.
author Galindo Cruz, Johan Fabian
author_facet Galindo Cruz, Johan Fabian
Atas, Evrim
Altan, Aysun
Kuroda, Daniel G.
Fernández Alberti, Sebastián
Tretiak, Sergei
Roitberg, Adrián
Kleiman, Valeria D.
author_role author
author2 Atas, Evrim
Altan, Aysun
Kuroda, Daniel G.
Fernández Alberti, Sebastián
Tretiak, Sergei
Roitberg, Adrián
Kleiman, Valeria D.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Excited Sttes
Ultrafast Dynamics
Dendrimers
topic Excited Sttes
Ultrafast Dynamics
Dendrimers
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.
Fil: Galindo Cruz, Johan Fabian. University of Florida; Estados Unidos. Universidad Nacional de Colombia; Colombia
Fil: Atas, Evrim. University of Florida; Estados Unidos
Fil: Altan, Aysun. No especifica;
Fil: Kuroda, Daniel G.. State University of Louisiana; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Kleiman, Valeria D.. University of Florida; Estados Unidos
description Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41554
Galindo Cruz, Johan Fabian; Atas, Evrim ; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; et al.; Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations; American Chemical Society; Journal of the American Chemical Society; 137; 36; 6-2015; 11637-11644
0002-7863
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41554
identifier_str_mv Galindo Cruz, Johan Fabian; Atas, Evrim ; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; et al.; Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations; American Chemical Society; Journal of the American Chemical Society; 137; 36; 6-2015; 11637-11644
0002-7863
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.5b04075
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.5b04075
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613502463901696
score 13.070432