Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations
- Autores
- Galindo Cruz, Johan Fabian; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; Tretiak, Sergei; Roitberg, Adrián; Kleiman, Valeria D.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.
Fil: Galindo Cruz, Johan Fabian. University of Florida; Estados Unidos. Universidad Nacional de Colombia; Colombia
Fil: Atas, Evrim. University of Florida; Estados Unidos
Fil: Altan, Aysun. No especifica;
Fil: Kuroda, Daniel G.. State University of Louisiana; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Kleiman, Valeria D.. University of Florida; Estados Unidos - Materia
-
Excited Sttes
Ultrafast Dynamics
Dendrimers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41554
Ver los metadatos del registro completo
id |
CONICETDig_1dee16c777a3b362eabbdc2de0a97c59 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41554 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of ExcitationsGalindo Cruz, Johan FabianAtas, EvrimAltan, AysunKuroda, Daniel G.Fernández Alberti, SebastiánTretiak, SergeiRoitberg, AdriánKleiman, Valeria D.Excited SttesUltrafast DynamicsDendrimershttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.Fil: Galindo Cruz, Johan Fabian. University of Florida; Estados Unidos. Universidad Nacional de Colombia; ColombiaFil: Atas, Evrim. University of Florida; Estados UnidosFil: Altan, Aysun. No especifica;Fil: Kuroda, Daniel G.. State University of Louisiana; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Kleiman, Valeria D.. University of Florida; Estados UnidosAmerican Chemical Society2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41554Galindo Cruz, Johan Fabian; Atas, Evrim ; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; et al.; Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations; American Chemical Society; Journal of the American Chemical Society; 137; 36; 6-2015; 11637-116440002-7863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.5b04075info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.5b04075info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:22Zoai:ri.conicet.gov.ar:11336/41554instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:22.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
title |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
spellingShingle |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations Galindo Cruz, Johan Fabian Excited Sttes Ultrafast Dynamics Dendrimers |
title_short |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
title_full |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
title_fullStr |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
title_full_unstemmed |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
title_sort |
Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations |
dc.creator.none.fl_str_mv |
Galindo Cruz, Johan Fabian Atas, Evrim Altan, Aysun Kuroda, Daniel G. Fernández Alberti, Sebastián Tretiak, Sergei Roitberg, Adrián Kleiman, Valeria D. |
author |
Galindo Cruz, Johan Fabian |
author_facet |
Galindo Cruz, Johan Fabian Atas, Evrim Altan, Aysun Kuroda, Daniel G. Fernández Alberti, Sebastián Tretiak, Sergei Roitberg, Adrián Kleiman, Valeria D. |
author_role |
author |
author2 |
Atas, Evrim Altan, Aysun Kuroda, Daniel G. Fernández Alberti, Sebastián Tretiak, Sergei Roitberg, Adrián Kleiman, Valeria D. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Excited Sttes Ultrafast Dynamics Dendrimers |
topic |
Excited Sttes Ultrafast Dynamics Dendrimers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials. Fil: Galindo Cruz, Johan Fabian. University of Florida; Estados Unidos. Universidad Nacional de Colombia; Colombia Fil: Atas, Evrim. University of Florida; Estados Unidos Fil: Altan, Aysun. No especifica; Fil: Kuroda, Daniel G.. State University of Louisiana; Estados Unidos Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos Fil: Roitberg, Adrián. University of Florida; Estados Unidos Fil: Kleiman, Valeria D.. University of Florida; Estados Unidos |
description |
Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment–theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41554 Galindo Cruz, Johan Fabian; Atas, Evrim ; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; et al.; Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations; American Chemical Society; Journal of the American Chemical Society; 137; 36; 6-2015; 11637-11644 0002-7863 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41554 |
identifier_str_mv |
Galindo Cruz, Johan Fabian; Atas, Evrim ; Altan, Aysun; Kuroda, Daniel G.; Fernández Alberti, Sebastián; et al.; Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations; American Chemical Society; Journal of the American Chemical Society; 137; 36; 6-2015; 11637-11644 0002-7863 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.5b04075 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.5b04075 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613502463901696 |
score |
13.070432 |