Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1

Autores
Sineli, Pedro Eugenio; Aparicio, Juan Daniel; Pernodet, Jean Luc; Polti, Marta Alejandra
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Chromium is a heavy metal widely used in a variety of industrial processes (leather tanning, steel production, metal corrosion inhibition). Hexavalent chromium is carcinogenic and presents higher toxicity than trivalent form since Cr(VI) is more water-soluble and mobile than Cr(III). Industrial effluents containing Cr(VI) are released into water courses, mostly without proper treatment, resulting in anthropogenic contamination. Over the last years, bacteria-mediated removal or stabilization of heavy metal into no or less toxic forms has become in an effective biotechnological process. In this sense, several physiological studies on Streptomyces sp. MC1, an actinobacteria isolated from a polluted soil in the province of Tucumán (Argentina), demonstrated be able to grow in presence of Cr(VI) and remove the metal both in liquid medium and contaminated soils. However, the molecular mechanisms involved are unknown in this actinobacteria. MS-based proteomics have become a powerful tool to understand the mechanisms that underlie physiological processes. In the present work, we use MS-based, label-free and quantitative proteomic analyses in order to identify enzymes involves in oxidative stress response caused by the presence of Cr(VI) in our actinobacteria strain MC1. Sampling points for proteomics analyses were established according to the growth of Streptomyces sp. MC1 in minimal medium (MM) amended with Cr(VI) at 50 mg L-1 and MM without the metal (control condition). Cells were harvested after 18 and 24 h of incubation in control condition and MM with Cr(VI) respectively. These sampling points allowed obtaining comparable and metabolically active cells (exponential phase of growth). Cr(VI) removal was 10% at the time that cells were harvested (24 h). A total of 1981 different proteins were detected in the proteome. It represents approximately 22% of the predicted protein sequences for this strain. 518 of these proteins passed our significance parameters which 186 of them were up-regulated in the condition supplemented with Cr(VI). Analysis with the software BlastKOALA showed that up-regulated proteins were distributed in metabolic pathways that result essential for a correct cellular operation. Overall, the proteins were related to carbon and energy metabolism, genetic information processing, oxidative stress response and membrane transports. Interestingly, enzymes from pentose phosphate pathway increasing significantly their abundance in presence of chromium. About, 10 different oxidoreductases enzymes were up-regulated in presence of the metal. Regarding oxidative stress response, key enzymes like superoxide dismutase, catalase, mycothiol synthase, and mycothiol amidase were identified with an increment in their abundance. The proteome analysis performed in Streptomyces sp. MC1 allowed us to identify the proteins involves in the homeostasis of Cr(VI). These results serve as basement to study and improve the heavy metal removal by actinobacteria.
Fil: Sineli, Pedro Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Aparicio, Juan Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Pernodet, Jean Luc. Institut de Biologie Intégrative de la Cellule; Francia
Fil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
LV Annual SAIB Meeting and XIV PABMB Congress
Salta
Argentina
Sociedad Argentina de Investigaciones Bioquímicas
Materia
PROTEOMIC
Cr(VI)
HOMEOSTASIS
STREPTOMYCES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181842

id CONICETDig_753409ec1b7386e342a635c82b467914
oai_identifier_str oai:ri.conicet.gov.ar:11336/181842
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1Sineli, Pedro EugenioAparicio, Juan DanielPernodet, Jean LucPolti, Marta AlejandraPROTEOMICCr(VI)HOMEOSTASISSTREPTOMYCEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Chromium is a heavy metal widely used in a variety of industrial processes (leather tanning, steel production, metal corrosion inhibition). Hexavalent chromium is carcinogenic and presents higher toxicity than trivalent form since Cr(VI) is more water-soluble and mobile than Cr(III). Industrial effluents containing Cr(VI) are released into water courses, mostly without proper treatment, resulting in anthropogenic contamination. Over the last years, bacteria-mediated removal or stabilization of heavy metal into no or less toxic forms has become in an effective biotechnological process. In this sense, several physiological studies on Streptomyces sp. MC1, an actinobacteria isolated from a polluted soil in the province of Tucumán (Argentina), demonstrated be able to grow in presence of Cr(VI) and remove the metal both in liquid medium and contaminated soils. However, the molecular mechanisms involved are unknown in this actinobacteria. MS-based proteomics have become a powerful tool to understand the mechanisms that underlie physiological processes. In the present work, we use MS-based, label-free and quantitative proteomic analyses in order to identify enzymes involves in oxidative stress response caused by the presence of Cr(VI) in our actinobacteria strain MC1. Sampling points for proteomics analyses were established according to the growth of Streptomyces sp. MC1 in minimal medium (MM) amended with Cr(VI) at 50 mg L-1 and MM without the metal (control condition). Cells were harvested after 18 and 24 h of incubation in control condition and MM with Cr(VI) respectively. These sampling points allowed obtaining comparable and metabolically active cells (exponential phase of growth). Cr(VI) removal was 10% at the time that cells were harvested (24 h). A total of 1981 different proteins were detected in the proteome. It represents approximately 22% of the predicted protein sequences for this strain. 518 of these proteins passed our significance parameters which 186 of them were up-regulated in the condition supplemented with Cr(VI). Analysis with the software BlastKOALA showed that up-regulated proteins were distributed in metabolic pathways that result essential for a correct cellular operation. Overall, the proteins were related to carbon and energy metabolism, genetic information processing, oxidative stress response and membrane transports. Interestingly, enzymes from pentose phosphate pathway increasing significantly their abundance in presence of chromium. About, 10 different oxidoreductases enzymes were up-regulated in presence of the metal. Regarding oxidative stress response, key enzymes like superoxide dismutase, catalase, mycothiol synthase, and mycothiol amidase were identified with an increment in their abundance. The proteome analysis performed in Streptomyces sp. MC1 allowed us to identify the proteins involves in the homeostasis of Cr(VI). These results serve as basement to study and improve the heavy metal removal by actinobacteria.Fil: Sineli, Pedro Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Aparicio, Juan Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Pernodet, Jean Luc. Institut de Biologie Intégrative de la Cellule; FranciaFil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaLV Annual SAIB Meeting and XIV PABMB CongressSaltaArgentinaSociedad Argentina de Investigaciones BioquímicasTech Science Press2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181842Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1; LV Annual SAIB Meeting and XIV PABMB Congress; Salta; Argentina; 2019; 1-20327-9545CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.saib.org.ar/sites/default/files/BIOCELL-SAIB-2019.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:09Zoai:ri.conicet.gov.ar:11336/181842instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:10.231CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
title Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
spellingShingle Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
Sineli, Pedro Eugenio
PROTEOMIC
Cr(VI)
HOMEOSTASIS
STREPTOMYCES
title_short Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
title_full Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
title_fullStr Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
title_full_unstemmed Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
title_sort Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1
dc.creator.none.fl_str_mv Sineli, Pedro Eugenio
Aparicio, Juan Daniel
Pernodet, Jean Luc
Polti, Marta Alejandra
author Sineli, Pedro Eugenio
author_facet Sineli, Pedro Eugenio
Aparicio, Juan Daniel
Pernodet, Jean Luc
Polti, Marta Alejandra
author_role author
author2 Aparicio, Juan Daniel
Pernodet, Jean Luc
Polti, Marta Alejandra
author2_role author
author
author
dc.subject.none.fl_str_mv PROTEOMIC
Cr(VI)
HOMEOSTASIS
STREPTOMYCES
topic PROTEOMIC
Cr(VI)
HOMEOSTASIS
STREPTOMYCES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Chromium is a heavy metal widely used in a variety of industrial processes (leather tanning, steel production, metal corrosion inhibition). Hexavalent chromium is carcinogenic and presents higher toxicity than trivalent form since Cr(VI) is more water-soluble and mobile than Cr(III). Industrial effluents containing Cr(VI) are released into water courses, mostly without proper treatment, resulting in anthropogenic contamination. Over the last years, bacteria-mediated removal or stabilization of heavy metal into no or less toxic forms has become in an effective biotechnological process. In this sense, several physiological studies on Streptomyces sp. MC1, an actinobacteria isolated from a polluted soil in the province of Tucumán (Argentina), demonstrated be able to grow in presence of Cr(VI) and remove the metal both in liquid medium and contaminated soils. However, the molecular mechanisms involved are unknown in this actinobacteria. MS-based proteomics have become a powerful tool to understand the mechanisms that underlie physiological processes. In the present work, we use MS-based, label-free and quantitative proteomic analyses in order to identify enzymes involves in oxidative stress response caused by the presence of Cr(VI) in our actinobacteria strain MC1. Sampling points for proteomics analyses were established according to the growth of Streptomyces sp. MC1 in minimal medium (MM) amended with Cr(VI) at 50 mg L-1 and MM without the metal (control condition). Cells were harvested after 18 and 24 h of incubation in control condition and MM with Cr(VI) respectively. These sampling points allowed obtaining comparable and metabolically active cells (exponential phase of growth). Cr(VI) removal was 10% at the time that cells were harvested (24 h). A total of 1981 different proteins were detected in the proteome. It represents approximately 22% of the predicted protein sequences for this strain. 518 of these proteins passed our significance parameters which 186 of them were up-regulated in the condition supplemented with Cr(VI). Analysis with the software BlastKOALA showed that up-regulated proteins were distributed in metabolic pathways that result essential for a correct cellular operation. Overall, the proteins were related to carbon and energy metabolism, genetic information processing, oxidative stress response and membrane transports. Interestingly, enzymes from pentose phosphate pathway increasing significantly their abundance in presence of chromium. About, 10 different oxidoreductases enzymes were up-regulated in presence of the metal. Regarding oxidative stress response, key enzymes like superoxide dismutase, catalase, mycothiol synthase, and mycothiol amidase were identified with an increment in their abundance. The proteome analysis performed in Streptomyces sp. MC1 allowed us to identify the proteins involves in the homeostasis of Cr(VI). These results serve as basement to study and improve the heavy metal removal by actinobacteria.
Fil: Sineli, Pedro Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Aparicio, Juan Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Pernodet, Jean Luc. Institut de Biologie Intégrative de la Cellule; Francia
Fil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
LV Annual SAIB Meeting and XIV PABMB Congress
Salta
Argentina
Sociedad Argentina de Investigaciones Bioquímicas
description Chromium is a heavy metal widely used in a variety of industrial processes (leather tanning, steel production, metal corrosion inhibition). Hexavalent chromium is carcinogenic and presents higher toxicity than trivalent form since Cr(VI) is more water-soluble and mobile than Cr(III). Industrial effluents containing Cr(VI) are released into water courses, mostly without proper treatment, resulting in anthropogenic contamination. Over the last years, bacteria-mediated removal or stabilization of heavy metal into no or less toxic forms has become in an effective biotechnological process. In this sense, several physiological studies on Streptomyces sp. MC1, an actinobacteria isolated from a polluted soil in the province of Tucumán (Argentina), demonstrated be able to grow in presence of Cr(VI) and remove the metal both in liquid medium and contaminated soils. However, the molecular mechanisms involved are unknown in this actinobacteria. MS-based proteomics have become a powerful tool to understand the mechanisms that underlie physiological processes. In the present work, we use MS-based, label-free and quantitative proteomic analyses in order to identify enzymes involves in oxidative stress response caused by the presence of Cr(VI) in our actinobacteria strain MC1. Sampling points for proteomics analyses were established according to the growth of Streptomyces sp. MC1 in minimal medium (MM) amended with Cr(VI) at 50 mg L-1 and MM without the metal (control condition). Cells were harvested after 18 and 24 h of incubation in control condition and MM with Cr(VI) respectively. These sampling points allowed obtaining comparable and metabolically active cells (exponential phase of growth). Cr(VI) removal was 10% at the time that cells were harvested (24 h). A total of 1981 different proteins were detected in the proteome. It represents approximately 22% of the predicted protein sequences for this strain. 518 of these proteins passed our significance parameters which 186 of them were up-regulated in the condition supplemented with Cr(VI). Analysis with the software BlastKOALA showed that up-regulated proteins were distributed in metabolic pathways that result essential for a correct cellular operation. Overall, the proteins were related to carbon and energy metabolism, genetic information processing, oxidative stress response and membrane transports. Interestingly, enzymes from pentose phosphate pathway increasing significantly their abundance in presence of chromium. About, 10 different oxidoreductases enzymes were up-regulated in presence of the metal. Regarding oxidative stress response, key enzymes like superoxide dismutase, catalase, mycothiol synthase, and mycothiol amidase were identified with an increment in their abundance. The proteome analysis performed in Streptomyces sp. MC1 allowed us to identify the proteins involves in the homeostasis of Cr(VI). These results serve as basement to study and improve the heavy metal removal by actinobacteria.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181842
Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1; LV Annual SAIB Meeting and XIV PABMB Congress; Salta; Argentina; 2019; 1-2
0327-9545
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181842
identifier_str_mv Proteomic analysis to understand Cr(VI) homeostasis in Streptomyces sp. MC1; LV Annual SAIB Meeting and XIV PABMB Congress; Salta; Argentina; 2019; 1-2
0327-9545
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.saib.org.ar/sites/default/files/BIOCELL-SAIB-2019.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Tech Science Press
publisher.none.fl_str_mv Tech Science Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269896355872768
score 13.13397