Finite-State Independence
- Autores
- Becher, Veronica Andrea; Carton, Olivier; Heiber, Pablo Ariel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we introduce a notion of independence based on finite-state automata: two infinite words are independent if no one helps to compress the other using one-to-one finite-state transducers with auxiliary input. We prove that, as expected, the set of independent pairs of infinite words has Lebesgue measure 1. We show that the join of two independent normal words is normal. However, the independence of two normal words is not guaranteed if we just require that their join is normal. To prove this we construct a normal word x1x2x3… where x2n = xn for every n. This construction has its own interest.
Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Carton, Olivier. Université Paris Diderot - Paris 7; Francia
Fil: Heiber, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina - Materia
-
Finite-State Automata
Independence
Infinite Sequences
Normal Sequences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60112
Ver los metadatos del registro completo
id |
CONICETDig_74f3a6120beea00ca1d1d5b35ab675a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60112 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite-State IndependenceBecher, Veronica AndreaCarton, OlivierHeiber, Pablo ArielFinite-State AutomataIndependenceInfinite SequencesNormal Sequenceshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we introduce a notion of independence based on finite-state automata: two infinite words are independent if no one helps to compress the other using one-to-one finite-state transducers with auxiliary input. We prove that, as expected, the set of independent pairs of infinite words has Lebesgue measure 1. We show that the join of two independent normal words is normal. However, the independence of two normal words is not guaranteed if we just require that their join is normal. To prove this we construct a normal word x1x2x3… where x2n = xn for every n. This construction has its own interest.Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Carton, Olivier. Université Paris Diderot - Paris 7; FranciaFil: Heiber, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaSpringer2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60112Becher, Veronica Andrea; Carton, Olivier; Heiber, Pablo Ariel; Finite-State Independence; Springer; Theory Of Computing Systems; 62; 7; 10-2018; 1555-15721432-4350CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00224-017-9821-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00224-017-9821-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:51Zoai:ri.conicet.gov.ar:11336/60112instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:51.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite-State Independence |
title |
Finite-State Independence |
spellingShingle |
Finite-State Independence Becher, Veronica Andrea Finite-State Automata Independence Infinite Sequences Normal Sequences |
title_short |
Finite-State Independence |
title_full |
Finite-State Independence |
title_fullStr |
Finite-State Independence |
title_full_unstemmed |
Finite-State Independence |
title_sort |
Finite-State Independence |
dc.creator.none.fl_str_mv |
Becher, Veronica Andrea Carton, Olivier Heiber, Pablo Ariel |
author |
Becher, Veronica Andrea |
author_facet |
Becher, Veronica Andrea Carton, Olivier Heiber, Pablo Ariel |
author_role |
author |
author2 |
Carton, Olivier Heiber, Pablo Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Finite-State Automata Independence Infinite Sequences Normal Sequences |
topic |
Finite-State Automata Independence Infinite Sequences Normal Sequences |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we introduce a notion of independence based on finite-state automata: two infinite words are independent if no one helps to compress the other using one-to-one finite-state transducers with auxiliary input. We prove that, as expected, the set of independent pairs of infinite words has Lebesgue measure 1. We show that the join of two independent normal words is normal. However, the independence of two normal words is not guaranteed if we just require that their join is normal. To prove this we construct a normal word x1x2x3… where x2n = xn for every n. This construction has its own interest. Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Carton, Olivier. Université Paris Diderot - Paris 7; Francia Fil: Heiber, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina |
description |
In this work we introduce a notion of independence based on finite-state automata: two infinite words are independent if no one helps to compress the other using one-to-one finite-state transducers with auxiliary input. We prove that, as expected, the set of independent pairs of infinite words has Lebesgue measure 1. We show that the join of two independent normal words is normal. However, the independence of two normal words is not guaranteed if we just require that their join is normal. To prove this we construct a normal word x1x2x3… where x2n = xn for every n. This construction has its own interest. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60112 Becher, Veronica Andrea; Carton, Olivier; Heiber, Pablo Ariel; Finite-State Independence; Springer; Theory Of Computing Systems; 62; 7; 10-2018; 1555-1572 1432-4350 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60112 |
identifier_str_mv |
Becher, Veronica Andrea; Carton, Olivier; Heiber, Pablo Ariel; Finite-State Independence; Springer; Theory Of Computing Systems; 62; 7; 10-2018; 1555-1572 1432-4350 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00224-017-9821-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00224-017-9821-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268758327951360 |
score |
13.13397 |