Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling

Autores
Zyserman, Fabio Ivan; Santos, Juan Enrique
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a new finite element (FE) method for magnetotelluric modelling of three-dimensional conductivity structures. Maxwell's equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconforming FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue University. The accuracy of the numerical method is verified by checking the computed solutions with the results of COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction. (C) 2000 Elsevier Science B.V. All rights reserved.
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Purdue University; Estados Unidos
Materia
Conductivity
Electromagnetic Field
Finite Element Analysis
Magnetotelluric Methods
Numerical Models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/71652

id CONICETDig_74b024d7e6c5c137c31f533adac84212
oai_identifier_str oai:ri.conicet.gov.ar:11336/71652
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modellingZyserman, Fabio IvanSantos, Juan EnriqueConductivityElectromagnetic FieldFinite Element AnalysisMagnetotelluric MethodsNumerical Modelshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a new finite element (FE) method for magnetotelluric modelling of three-dimensional conductivity structures. Maxwell's equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconforming FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue University. The accuracy of the numerical method is verified by checking the computed solutions with the results of COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction. (C) 2000 Elsevier Science B.V. All rights reserved.Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Purdue University; Estados UnidosElsevier Science2000-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71652Zyserman, Fabio Ivan; Santos, Juan Enrique; Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling; Elsevier Science; Journal Of Applied Geophysics; 44; 4; 5-2000; 337-3510926-9851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926985100000124info:eu-repo/semantics/altIdentifier/doi/10.1016/S0926-9851(00)00012-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:14Zoai:ri.conicet.gov.ar:11336/71652instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:14.639CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
title Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
spellingShingle Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
Zyserman, Fabio Ivan
Conductivity
Electromagnetic Field
Finite Element Analysis
Magnetotelluric Methods
Numerical Models
title_short Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
title_full Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
title_fullStr Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
title_full_unstemmed Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
title_sort Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling
dc.creator.none.fl_str_mv Zyserman, Fabio Ivan
Santos, Juan Enrique
author Zyserman, Fabio Ivan
author_facet Zyserman, Fabio Ivan
Santos, Juan Enrique
author_role author
author2 Santos, Juan Enrique
author2_role author
dc.subject.none.fl_str_mv Conductivity
Electromagnetic Field
Finite Element Analysis
Magnetotelluric Methods
Numerical Models
topic Conductivity
Electromagnetic Field
Finite Element Analysis
Magnetotelluric Methods
Numerical Models
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a new finite element (FE) method for magnetotelluric modelling of three-dimensional conductivity structures. Maxwell's equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconforming FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue University. The accuracy of the numerical method is verified by checking the computed solutions with the results of COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction. (C) 2000 Elsevier Science B.V. All rights reserved.
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Purdue University; Estados Unidos
description We present a new finite element (FE) method for magnetotelluric modelling of three-dimensional conductivity structures. Maxwell's equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconforming FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue University. The accuracy of the numerical method is verified by checking the computed solutions with the results of COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction. (C) 2000 Elsevier Science B.V. All rights reserved.
publishDate 2000
dc.date.none.fl_str_mv 2000-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/71652
Zyserman, Fabio Ivan; Santos, Juan Enrique; Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling; Elsevier Science; Journal Of Applied Geophysics; 44; 4; 5-2000; 337-351
0926-9851
CONICET Digital
CONICET
url http://hdl.handle.net/11336/71652
identifier_str_mv Zyserman, Fabio Ivan; Santos, Juan Enrique; Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling; Elsevier Science; Journal Of Applied Geophysics; 44; 4; 5-2000; 337-351
0926-9851
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926985100000124
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0926-9851(00)00012-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614180889427968
score 13.070432