Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo

Autores
Conde Garrido, Juan Manuel; Couselo, M. A.; Silveyra, Josefina María
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
En un trabajo previo, Conde Garrido y Silveyra propusieron una novedosa tecnología de trampa fría capaz de atrapar contaminantes en sistemas de vacío. La misma fue diseñada para ser aplicada en sistemas de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Mientras que los sistemas tradicionales se enfrían por compresión de gases o baños fríos como nitrógeno líquido, la trampa reportada se enfría por efecto termoeléctrico. Esto permite reducir la inversión de capital, los costos operativos y los tiempos de puesta en marcha y mantenimiento. En el presente trabajo se presenta la construcción, puesta a punto y caracterización del primer prototipo físico de la trampa fría. La caracterización incluyó, en primer lugar, el control de la presión final alcanzada por el dispositivo. Para caracterizar el desempeño térmico del dispositivo, se diseñó y fabricó un sistema de medición temperaturas. Como parte de este sistema de medición, se destaca un pasante eléctrico para vacío de bajo costo. Los resultados indican que, con la trampa fabricada, se pueden alcanzar presiones menores a 2 × 10−5 mbar, mientras que las superficies frías alcanzan temperaturas de aproximadamente −12 ◦C. Los niveles de vacío y de temperatura cumplen las condiciones requeridas para el sistema de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Sin embargo, no se logran temperaturas tan bajas como las estimadas para el prototipo virtual (de hasta −50◦C). Se identificaron entonces los puentes y resistencias térmicas presentes en el dispositivo fabricado, despreciados en el modelo, señalando oportunidades de mejora. Finalmente, se proponen revisiones al diseño actual que simplifican su proceso de manufactura, mejoran su robustez y eficacia, y facilitan su operación y mantenimiento.
In a previous work, Conde Garrido and Silveyra proposed a novel cold trap (baffle) technology capable of trapping contaminants in vacuum systems. The baffle was designed to be applied in systems to synthesize chalcogenide glass thin films by pulsed laser deposition. While traditional baffles are cooled down with compression cooling systems or cooling solutions such as liquid nitrogen, the reported baffle is cooled down by the thermoelectric effect, which allows for reducing the capital investment, operating costs, as well as start-up and maintenance times. This paper presents the construction, tuning, and characterization of the first physical prototype of the baffle. The characterization included, first, the control of the final pressure reached by the device. To characterize the thermal performance of the baffle, a temperature measurement system was designed and manufactured. Within this measurement system, we highlight a low-cost electric vacuum feedthrough. The results indicate that the constructed baffle can reach pressures lower than 2 × 10−5 mbar, while the cold surfaces reach temperatures of approximately −12◦ C. The vacuum and cold temperature levels meet the required conditions for the pulsed laser deposition of chalcogenide glass thin films. However, temperatures are not as low as those estimated for the virtual prototype (down to −50◦ C). Thermal bridges and resistances present in the fabricated device, neglected in the model, were then identified, pointing out opportunities for improvement. Finally, revisions to the current design are proposed that simplify its manufacturing process, improve its robustness and efficiency, and facilitate its operation and maintenance.
Fil: Conde Garrido, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina
Fil: Couselo, M. A.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina
Fil: Silveyra, Josefina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina
Materia
BAFFLE
THERMOELECTRIC
ELECTRICAL FEEDTHROUGH
VACUUM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219196

id CONICETDig_7459bdf0ce4f7ea4b2c8318a97b607d4
oai_identifier_str oai:ri.conicet.gov.ar:11336/219196
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costoFirst prototype of a low-cost vacuum baffle with electrical feedthroughConde Garrido, Juan ManuelCouselo, M. A.Silveyra, Josefina MaríaBAFFLETHERMOELECTRICELECTRICAL FEEDTHROUGHVACUUMhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2En un trabajo previo, Conde Garrido y Silveyra propusieron una novedosa tecnología de trampa fría capaz de atrapar contaminantes en sistemas de vacío. La misma fue diseñada para ser aplicada en sistemas de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Mientras que los sistemas tradicionales se enfrían por compresión de gases o baños fríos como nitrógeno líquido, la trampa reportada se enfría por efecto termoeléctrico. Esto permite reducir la inversión de capital, los costos operativos y los tiempos de puesta en marcha y mantenimiento. En el presente trabajo se presenta la construcción, puesta a punto y caracterización del primer prototipo físico de la trampa fría. La caracterización incluyó, en primer lugar, el control de la presión final alcanzada por el dispositivo. Para caracterizar el desempeño térmico del dispositivo, se diseñó y fabricó un sistema de medición temperaturas. Como parte de este sistema de medición, se destaca un pasante eléctrico para vacío de bajo costo. Los resultados indican que, con la trampa fabricada, se pueden alcanzar presiones menores a 2 × 10−5 mbar, mientras que las superficies frías alcanzan temperaturas de aproximadamente −12 ◦C. Los niveles de vacío y de temperatura cumplen las condiciones requeridas para el sistema de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Sin embargo, no se logran temperaturas tan bajas como las estimadas para el prototipo virtual (de hasta −50◦C). Se identificaron entonces los puentes y resistencias térmicas presentes en el dispositivo fabricado, despreciados en el modelo, señalando oportunidades de mejora. Finalmente, se proponen revisiones al diseño actual que simplifican su proceso de manufactura, mejoran su robustez y eficacia, y facilitan su operación y mantenimiento.In a previous work, Conde Garrido and Silveyra proposed a novel cold trap (baffle) technology capable of trapping contaminants in vacuum systems. The baffle was designed to be applied in systems to synthesize chalcogenide glass thin films by pulsed laser deposition. While traditional baffles are cooled down with compression cooling systems or cooling solutions such as liquid nitrogen, the reported baffle is cooled down by the thermoelectric effect, which allows for reducing the capital investment, operating costs, as well as start-up and maintenance times. This paper presents the construction, tuning, and characterization of the first physical prototype of the baffle. The characterization included, first, the control of the final pressure reached by the device. To characterize the thermal performance of the baffle, a temperature measurement system was designed and manufactured. Within this measurement system, we highlight a low-cost electric vacuum feedthrough. The results indicate that the constructed baffle can reach pressures lower than 2 × 10−5 mbar, while the cold surfaces reach temperatures of approximately −12◦ C. The vacuum and cold temperature levels meet the required conditions for the pulsed laser deposition of chalcogenide glass thin films. However, temperatures are not as low as those estimated for the virtual prototype (down to −50◦ C). Thermal bridges and resistances present in the fabricated device, neglected in the model, were then identified, pointing out opportunities for improvement. Finally, revisions to the current design are proposed that simplify its manufacturing process, improve its robustness and efficiency, and facilitate its operation and maintenance.Fil: Conde Garrido, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; ArgentinaFil: Couselo, M. A.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; ArgentinaFil: Silveyra, Josefina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; ArgentinaAsociación Física Argentina2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219196Conde Garrido, Juan Manuel; Couselo, M. A.; Silveyra, Josefina María; Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo; Asociación Física Argentina; Anales AFA; 34; 1; 1-2023; 8-160327-358X1850-1168CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://anales.fisica.org.ar/index.php/analesafa/article/view/2365info:eu-repo/semantics/altIdentifier/doi/10.31527/analesafa.2023.34.1.8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:44:09Zoai:ri.conicet.gov.ar:11336/219196instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:44:10.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
First prototype of a low-cost vacuum baffle with electrical feedthrough
title Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
spellingShingle Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
Conde Garrido, Juan Manuel
BAFFLE
THERMOELECTRIC
ELECTRICAL FEEDTHROUGH
VACUUM
title_short Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
title_full Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
title_fullStr Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
title_full_unstemmed Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
title_sort Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo
dc.creator.none.fl_str_mv Conde Garrido, Juan Manuel
Couselo, M. A.
Silveyra, Josefina María
author Conde Garrido, Juan Manuel
author_facet Conde Garrido, Juan Manuel
Couselo, M. A.
Silveyra, Josefina María
author_role author
author2 Couselo, M. A.
Silveyra, Josefina María
author2_role author
author
dc.subject.none.fl_str_mv BAFFLE
THERMOELECTRIC
ELECTRICAL FEEDTHROUGH
VACUUM
topic BAFFLE
THERMOELECTRIC
ELECTRICAL FEEDTHROUGH
VACUUM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv En un trabajo previo, Conde Garrido y Silveyra propusieron una novedosa tecnología de trampa fría capaz de atrapar contaminantes en sistemas de vacío. La misma fue diseñada para ser aplicada en sistemas de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Mientras que los sistemas tradicionales se enfrían por compresión de gases o baños fríos como nitrógeno líquido, la trampa reportada se enfría por efecto termoeléctrico. Esto permite reducir la inversión de capital, los costos operativos y los tiempos de puesta en marcha y mantenimiento. En el presente trabajo se presenta la construcción, puesta a punto y caracterización del primer prototipo físico de la trampa fría. La caracterización incluyó, en primer lugar, el control de la presión final alcanzada por el dispositivo. Para caracterizar el desempeño térmico del dispositivo, se diseñó y fabricó un sistema de medición temperaturas. Como parte de este sistema de medición, se destaca un pasante eléctrico para vacío de bajo costo. Los resultados indican que, con la trampa fabricada, se pueden alcanzar presiones menores a 2 × 10−5 mbar, mientras que las superficies frías alcanzan temperaturas de aproximadamente −12 ◦C. Los niveles de vacío y de temperatura cumplen las condiciones requeridas para el sistema de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Sin embargo, no se logran temperaturas tan bajas como las estimadas para el prototipo virtual (de hasta −50◦C). Se identificaron entonces los puentes y resistencias térmicas presentes en el dispositivo fabricado, despreciados en el modelo, señalando oportunidades de mejora. Finalmente, se proponen revisiones al diseño actual que simplifican su proceso de manufactura, mejoran su robustez y eficacia, y facilitan su operación y mantenimiento.
In a previous work, Conde Garrido and Silveyra proposed a novel cold trap (baffle) technology capable of trapping contaminants in vacuum systems. The baffle was designed to be applied in systems to synthesize chalcogenide glass thin films by pulsed laser deposition. While traditional baffles are cooled down with compression cooling systems or cooling solutions such as liquid nitrogen, the reported baffle is cooled down by the thermoelectric effect, which allows for reducing the capital investment, operating costs, as well as start-up and maintenance times. This paper presents the construction, tuning, and characterization of the first physical prototype of the baffle. The characterization included, first, the control of the final pressure reached by the device. To characterize the thermal performance of the baffle, a temperature measurement system was designed and manufactured. Within this measurement system, we highlight a low-cost electric vacuum feedthrough. The results indicate that the constructed baffle can reach pressures lower than 2 × 10−5 mbar, while the cold surfaces reach temperatures of approximately −12◦ C. The vacuum and cold temperature levels meet the required conditions for the pulsed laser deposition of chalcogenide glass thin films. However, temperatures are not as low as those estimated for the virtual prototype (down to −50◦ C). Thermal bridges and resistances present in the fabricated device, neglected in the model, were then identified, pointing out opportunities for improvement. Finally, revisions to the current design are proposed that simplify its manufacturing process, improve its robustness and efficiency, and facilitate its operation and maintenance.
Fil: Conde Garrido, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina
Fil: Couselo, M. A.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina
Fil: Silveyra, Josefina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina
description En un trabajo previo, Conde Garrido y Silveyra propusieron una novedosa tecnología de trampa fría capaz de atrapar contaminantes en sistemas de vacío. La misma fue diseñada para ser aplicada en sistemas de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Mientras que los sistemas tradicionales se enfrían por compresión de gases o baños fríos como nitrógeno líquido, la trampa reportada se enfría por efecto termoeléctrico. Esto permite reducir la inversión de capital, los costos operativos y los tiempos de puesta en marcha y mantenimiento. En el presente trabajo se presenta la construcción, puesta a punto y caracterización del primer prototipo físico de la trampa fría. La caracterización incluyó, en primer lugar, el control de la presión final alcanzada por el dispositivo. Para caracterizar el desempeño térmico del dispositivo, se diseñó y fabricó un sistema de medición temperaturas. Como parte de este sistema de medición, se destaca un pasante eléctrico para vacío de bajo costo. Los resultados indican que, con la trampa fabricada, se pueden alcanzar presiones menores a 2 × 10−5 mbar, mientras que las superficies frías alcanzan temperaturas de aproximadamente −12 ◦C. Los niveles de vacío y de temperatura cumplen las condiciones requeridas para el sistema de deposición de películas delgadas de vidrios calcogenuros por ablación láser pulsada. Sin embargo, no se logran temperaturas tan bajas como las estimadas para el prototipo virtual (de hasta −50◦C). Se identificaron entonces los puentes y resistencias térmicas presentes en el dispositivo fabricado, despreciados en el modelo, señalando oportunidades de mejora. Finalmente, se proponen revisiones al diseño actual que simplifican su proceso de manufactura, mejoran su robustez y eficacia, y facilitan su operación y mantenimiento.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219196
Conde Garrido, Juan Manuel; Couselo, M. A.; Silveyra, Josefina María; Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo; Asociación Física Argentina; Anales AFA; 34; 1; 1-2023; 8-16
0327-358X
1850-1168
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219196
identifier_str_mv Conde Garrido, Juan Manuel; Couselo, M. A.; Silveyra, Josefina María; Primer prototipo de trampa fría con pasante eléctrico para vacío de bajo costo; Asociación Física Argentina; Anales AFA; 34; 1; 1-2023; 8-16
0327-358X
1850-1168
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://anales.fisica.org.ar/index.php/analesafa/article/view/2365
info:eu-repo/semantics/altIdentifier/doi/10.31527/analesafa.2023.34.1.8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Física Argentina
publisher.none.fl_str_mv Asociación Física Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335353303662592
score 13.075124