Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model
- Autores
- Pose, Fernando Ezequiel; Ciarrocchi, Nicolas Marcelo; Videla, Carlos; Redelico, Francisco Oscar
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Intracranial pressure (ICP) monitoring is commonly used in the follow-up of patients in intensive care units, but only a small part of the information available in the ICP time series is exploited. One of the most important features to guide patient follow-up and treatment is intracranial compliance. We propose using permutation entropy (PE) as a method to extract non-obvious information from the ICP curve. We analyzed the results of a pig experiment with sliding windows of 3600 samples and 1000 displacement samples, and estimated their respective PEs, their associated probability distributions, and the number of missing patterns (NMP). We observed that the behavior of PE is inverse to that of ICP, in addition to the fact that NMP appears as a surrogate for intracranial compliance. In lesion-free periods, PE is usually greater than 0.3, and normalized NMP is less than (Formula presented.) and (Formula presented.). Any deviation from these values could be a possible warning of altered neurophysiology. In the terminal phases of the lesion, the normalized NMP is higher than (Formula presented.), and PE is not sensitive to changes in ICP and (Formula presented.). The results show that it could be used for real-time patient monitoring or as input for a machine learning tool.
Fil: Pose, Fernando Ezequiel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Fil: Ciarrocchi, Nicolas Marcelo. Hospital Italiano; Argentina
Fil: Videla, Carlos. Hospital Italiano; Argentina
Fil: Redelico, Francisco Oscar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina - Materia
-
INTRACRANIAL COMPLIANCE
INTRACRANIAL PRESSURE
PERMUTATION ENTROPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227945
Ver los metadatos del registro completo
id |
CONICETDig_73e06015ded3c02d1d8a3c74eeac67a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227945 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine ModelPose, Fernando EzequielCiarrocchi, Nicolas MarceloVidela, CarlosRedelico, Francisco OscarINTRACRANIAL COMPLIANCEINTRACRANIAL PRESSUREPERMUTATION ENTROPYhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Intracranial pressure (ICP) monitoring is commonly used in the follow-up of patients in intensive care units, but only a small part of the information available in the ICP time series is exploited. One of the most important features to guide patient follow-up and treatment is intracranial compliance. We propose using permutation entropy (PE) as a method to extract non-obvious information from the ICP curve. We analyzed the results of a pig experiment with sliding windows of 3600 samples and 1000 displacement samples, and estimated their respective PEs, their associated probability distributions, and the number of missing patterns (NMP). We observed that the behavior of PE is inverse to that of ICP, in addition to the fact that NMP appears as a surrogate for intracranial compliance. In lesion-free periods, PE is usually greater than 0.3, and normalized NMP is less than (Formula presented.) and (Formula presented.). Any deviation from these values could be a possible warning of altered neurophysiology. In the terminal phases of the lesion, the normalized NMP is higher than (Formula presented.), and PE is not sensitive to changes in ICP and (Formula presented.). The results show that it could be used for real-time patient monitoring or as input for a machine learning tool.Fil: Pose, Fernando Ezequiel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; ArgentinaFil: Ciarrocchi, Nicolas Marcelo. Hospital Italiano; ArgentinaFil: Videla, Carlos. Hospital Italiano; ArgentinaFil: Redelico, Francisco Oscar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaMolecular Diversity Preservation International2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227945Pose, Fernando Ezequiel; Ciarrocchi, Nicolas Marcelo; Videla, Carlos; Redelico, Francisco Oscar; Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model; Molecular Diversity Preservation International; Entropy; 25; 2; 1-2023; 1-151099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/2/267info:eu-repo/semantics/altIdentifier/doi/10.3390/e25020267info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:22Zoai:ri.conicet.gov.ar:11336/227945instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:23.223CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
title |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
spellingShingle |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model Pose, Fernando Ezequiel INTRACRANIAL COMPLIANCE INTRACRANIAL PRESSURE PERMUTATION ENTROPY |
title_short |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
title_full |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
title_fullStr |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
title_full_unstemmed |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
title_sort |
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model |
dc.creator.none.fl_str_mv |
Pose, Fernando Ezequiel Ciarrocchi, Nicolas Marcelo Videla, Carlos Redelico, Francisco Oscar |
author |
Pose, Fernando Ezequiel |
author_facet |
Pose, Fernando Ezequiel Ciarrocchi, Nicolas Marcelo Videla, Carlos Redelico, Francisco Oscar |
author_role |
author |
author2 |
Ciarrocchi, Nicolas Marcelo Videla, Carlos Redelico, Francisco Oscar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INTRACRANIAL COMPLIANCE INTRACRANIAL PRESSURE PERMUTATION ENTROPY |
topic |
INTRACRANIAL COMPLIANCE INTRACRANIAL PRESSURE PERMUTATION ENTROPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Intracranial pressure (ICP) monitoring is commonly used in the follow-up of patients in intensive care units, but only a small part of the information available in the ICP time series is exploited. One of the most important features to guide patient follow-up and treatment is intracranial compliance. We propose using permutation entropy (PE) as a method to extract non-obvious information from the ICP curve. We analyzed the results of a pig experiment with sliding windows of 3600 samples and 1000 displacement samples, and estimated their respective PEs, their associated probability distributions, and the number of missing patterns (NMP). We observed that the behavior of PE is inverse to that of ICP, in addition to the fact that NMP appears as a surrogate for intracranial compliance. In lesion-free periods, PE is usually greater than 0.3, and normalized NMP is less than (Formula presented.) and (Formula presented.). Any deviation from these values could be a possible warning of altered neurophysiology. In the terminal phases of the lesion, the normalized NMP is higher than (Formula presented.), and PE is not sensitive to changes in ICP and (Formula presented.). The results show that it could be used for real-time patient monitoring or as input for a machine learning tool. Fil: Pose, Fernando Ezequiel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina Fil: Ciarrocchi, Nicolas Marcelo. Hospital Italiano; Argentina Fil: Videla, Carlos. Hospital Italiano; Argentina Fil: Redelico, Francisco Oscar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina |
description |
Intracranial pressure (ICP) monitoring is commonly used in the follow-up of patients in intensive care units, but only a small part of the information available in the ICP time series is exploited. One of the most important features to guide patient follow-up and treatment is intracranial compliance. We propose using permutation entropy (PE) as a method to extract non-obvious information from the ICP curve. We analyzed the results of a pig experiment with sliding windows of 3600 samples and 1000 displacement samples, and estimated their respective PEs, their associated probability distributions, and the number of missing patterns (NMP). We observed that the behavior of PE is inverse to that of ICP, in addition to the fact that NMP appears as a surrogate for intracranial compliance. In lesion-free periods, PE is usually greater than 0.3, and normalized NMP is less than (Formula presented.) and (Formula presented.). Any deviation from these values could be a possible warning of altered neurophysiology. In the terminal phases of the lesion, the normalized NMP is higher than (Formula presented.), and PE is not sensitive to changes in ICP and (Formula presented.). The results show that it could be used for real-time patient monitoring or as input for a machine learning tool. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227945 Pose, Fernando Ezequiel; Ciarrocchi, Nicolas Marcelo; Videla, Carlos; Redelico, Francisco Oscar; Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model; Molecular Diversity Preservation International; Entropy; 25; 2; 1-2023; 1-15 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227945 |
identifier_str_mv |
Pose, Fernando Ezequiel; Ciarrocchi, Nicolas Marcelo; Videla, Carlos; Redelico, Francisco Oscar; Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model; Molecular Diversity Preservation International; Entropy; 25; 2; 1-2023; 1-15 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/2/267 info:eu-repo/semantics/altIdentifier/doi/10.3390/e25020267 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269221659082752 |
score |
13.13397 |