Groundwater and soil chemistry changes under phreatophytic tree plantations
- Autores
- Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The onset of groundwater consumption by plants can initiate a pathway of chemical inputs from aquifers to ecosystems, typically absent in groundwater recharge areas. We explored this biogeochemical transfer and its influence on soils in phreatophytic eucalypt plantations and native grasslands of the Pampas (Argentina). Groundwater and soil chemical observations at three grassland/plantation pairs were complemented with more detailed analyses along a 400-m-long grassland-plantation transect. Although tree plantations showed a widespread and homogeneous salinization of groundwater and soils at all study sites, chemical contrasts between the plantation edge and core were evident along the study transect. Nonsalty, slightly acidic, bicarbonate-dominated waters in the grassland changed sharply within the plantation, with dissolved chloride, sulfate, calcium, and magnesium peaking at the plantation core (200 m away from the grassland) and dissolved sodium, carbonate, bicarbonate, and pH peaking toward the edge (0–50 m away from the grassland) and declining toward the core. In agreement with these differences, soil alkalinization was the strongest at the plantation edge but absent in the core. Groundwater flow simulations using FLOWNET suggested trajectories of increasing length and depth and older groundwater ages (confirmed by tritium analyses) toward the plantation core, explaining the hydrochemical contrasts within the plantation. Flow simulations and chloride mass balances suggested discharges of 250–500 mm yr−1 to the plantations. In our sites phreatophytic discharge controlled solute transfers from groundwater through (1) altered flow within the aquifer, affecting solute transport to the rooting zone, and (2) water uptake plus solute exclusion, concentrating solutes in the rooting zone. While the first mechanism may be restricted to the core of large phreatophytic areas, the second is likely to occur more generally in phreatophytic ecosystems.
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Jackson, Robert B.. University of Duke; Estados Unidos - Materia
- Groundwater
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238829
Ver los metadatos del registro completo
id |
CONICETDig_73a2366892a13052215222ac5802bbb6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238829 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Groundwater and soil chemistry changes under phreatophytic tree plantationsJobbagy Gampel, Esteban GabrielJackson, Robert B.Groundwaterhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The onset of groundwater consumption by plants can initiate a pathway of chemical inputs from aquifers to ecosystems, typically absent in groundwater recharge areas. We explored this biogeochemical transfer and its influence on soils in phreatophytic eucalypt plantations and native grasslands of the Pampas (Argentina). Groundwater and soil chemical observations at three grassland/plantation pairs were complemented with more detailed analyses along a 400-m-long grassland-plantation transect. Although tree plantations showed a widespread and homogeneous salinization of groundwater and soils at all study sites, chemical contrasts between the plantation edge and core were evident along the study transect. Nonsalty, slightly acidic, bicarbonate-dominated waters in the grassland changed sharply within the plantation, with dissolved chloride, sulfate, calcium, and magnesium peaking at the plantation core (200 m away from the grassland) and dissolved sodium, carbonate, bicarbonate, and pH peaking toward the edge (0–50 m away from the grassland) and declining toward the core. In agreement with these differences, soil alkalinization was the strongest at the plantation edge but absent in the core. Groundwater flow simulations using FLOWNET suggested trajectories of increasing length and depth and older groundwater ages (confirmed by tritium analyses) toward the plantation core, explaining the hydrochemical contrasts within the plantation. Flow simulations and chloride mass balances suggested discharges of 250–500 mm yr−1 to the plantations. In our sites phreatophytic discharge controlled solute transfers from groundwater through (1) altered flow within the aquifer, affecting solute transport to the rooting zone, and (2) water uptake plus solute exclusion, concentrating solutes in the rooting zone. While the first mechanism may be restricted to the core of large phreatophytic areas, the second is likely to occur more generally in phreatophytic ecosystems.Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Jackson, Robert B.. University of Duke; Estados UnidosAmerican Geophysical Union2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238829Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Groundwater and soil chemistry changes under phreatophytic tree plantations; American Geophysical Union; Journal of Geophysical Research; 112; 12-2007; 1-150148-0227CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1029/2006JG000246info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006JG000246info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:02Zoai:ri.conicet.gov.ar:11336/238829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:02.474CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
title |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
spellingShingle |
Groundwater and soil chemistry changes under phreatophytic tree plantations Jobbagy Gampel, Esteban Gabriel Groundwater |
title_short |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
title_full |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
title_fullStr |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
title_full_unstemmed |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
title_sort |
Groundwater and soil chemistry changes under phreatophytic tree plantations |
dc.creator.none.fl_str_mv |
Jobbagy Gampel, Esteban Gabriel Jackson, Robert B. |
author |
Jobbagy Gampel, Esteban Gabriel |
author_facet |
Jobbagy Gampel, Esteban Gabriel Jackson, Robert B. |
author_role |
author |
author2 |
Jackson, Robert B. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Groundwater |
topic |
Groundwater |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
The onset of groundwater consumption by plants can initiate a pathway of chemical inputs from aquifers to ecosystems, typically absent in groundwater recharge areas. We explored this biogeochemical transfer and its influence on soils in phreatophytic eucalypt plantations and native grasslands of the Pampas (Argentina). Groundwater and soil chemical observations at three grassland/plantation pairs were complemented with more detailed analyses along a 400-m-long grassland-plantation transect. Although tree plantations showed a widespread and homogeneous salinization of groundwater and soils at all study sites, chemical contrasts between the plantation edge and core were evident along the study transect. Nonsalty, slightly acidic, bicarbonate-dominated waters in the grassland changed sharply within the plantation, with dissolved chloride, sulfate, calcium, and magnesium peaking at the plantation core (200 m away from the grassland) and dissolved sodium, carbonate, bicarbonate, and pH peaking toward the edge (0–50 m away from the grassland) and declining toward the core. In agreement with these differences, soil alkalinization was the strongest at the plantation edge but absent in the core. Groundwater flow simulations using FLOWNET suggested trajectories of increasing length and depth and older groundwater ages (confirmed by tritium analyses) toward the plantation core, explaining the hydrochemical contrasts within the plantation. Flow simulations and chloride mass balances suggested discharges of 250–500 mm yr−1 to the plantations. In our sites phreatophytic discharge controlled solute transfers from groundwater through (1) altered flow within the aquifer, affecting solute transport to the rooting zone, and (2) water uptake plus solute exclusion, concentrating solutes in the rooting zone. While the first mechanism may be restricted to the core of large phreatophytic areas, the second is likely to occur more generally in phreatophytic ecosystems. Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Jackson, Robert B.. University of Duke; Estados Unidos |
description |
The onset of groundwater consumption by plants can initiate a pathway of chemical inputs from aquifers to ecosystems, typically absent in groundwater recharge areas. We explored this biogeochemical transfer and its influence on soils in phreatophytic eucalypt plantations and native grasslands of the Pampas (Argentina). Groundwater and soil chemical observations at three grassland/plantation pairs were complemented with more detailed analyses along a 400-m-long grassland-plantation transect. Although tree plantations showed a widespread and homogeneous salinization of groundwater and soils at all study sites, chemical contrasts between the plantation edge and core were evident along the study transect. Nonsalty, slightly acidic, bicarbonate-dominated waters in the grassland changed sharply within the plantation, with dissolved chloride, sulfate, calcium, and magnesium peaking at the plantation core (200 m away from the grassland) and dissolved sodium, carbonate, bicarbonate, and pH peaking toward the edge (0–50 m away from the grassland) and declining toward the core. In agreement with these differences, soil alkalinization was the strongest at the plantation edge but absent in the core. Groundwater flow simulations using FLOWNET suggested trajectories of increasing length and depth and older groundwater ages (confirmed by tritium analyses) toward the plantation core, explaining the hydrochemical contrasts within the plantation. Flow simulations and chloride mass balances suggested discharges of 250–500 mm yr−1 to the plantations. In our sites phreatophytic discharge controlled solute transfers from groundwater through (1) altered flow within the aquifer, affecting solute transport to the rooting zone, and (2) water uptake plus solute exclusion, concentrating solutes in the rooting zone. While the first mechanism may be restricted to the core of large phreatophytic areas, the second is likely to occur more generally in phreatophytic ecosystems. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238829 Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Groundwater and soil chemistry changes under phreatophytic tree plantations; American Geophysical Union; Journal of Geophysical Research; 112; 12-2007; 1-15 0148-0227 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/238829 |
identifier_str_mv |
Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Groundwater and soil chemistry changes under phreatophytic tree plantations; American Geophysical Union; Journal of Geophysical Research; 112; 12-2007; 1-15 0148-0227 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1029/2006JG000246 info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006JG000246 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614260582252544 |
score |
13.070432 |