Supports and Modified Nano-particles in Designing Model Catalysts
- Autores
- Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; Schauermann, S.; Shaikhutdinov, S.; Sterrer, M.; Freund, H. J.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles.
Fil: Obrien, C. P.. US Army Research Laboratory; Estados Unidos
Fil: Dostert, K. H.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Hollerer, M.. University of Graz; Austria
Fil: Stiehler, Christian. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Schauermann, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Shaikhutdinov, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Sterrer, M.. University of Graz; Austria
Fil: Freund, H. J.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania - Materia
-
oxide-metal interface
nanoparticle properties
activation of particles
hydrogenation reactions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19490
Ver los metadatos del registro completo
| id |
CONICETDig_734168b49f21fde2bbec9a42e80f6edd |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19490 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Supports and Modified Nano-particles in Designing Model CatalystsObrien, C. P.Dostert, K. H.Hollerer, M.Stiehler, ChristianCalaza, Florencia CarolinaSchauermann, S.Shaikhutdinov, S.Sterrer, M.Freund, H. J.oxide-metal interfacenanoparticle propertiesactivation of particleshydrogenation reactionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles.Fil: Obrien, C. P.. US Army Research Laboratory; Estados UnidosFil: Dostert, K. H.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Hollerer, M.. University of Graz; AustriaFil: Stiehler, Christian. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Schauermann, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Shaikhutdinov, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Sterrer, M.. University of Graz; AustriaFil: Freund, H. J.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaRoyal Society Of Chemistry2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19490Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; et al.; Supports and Modified Nano-particles in Designing Model Catalysts; Royal Society Of Chemistry; Faraday Discussions; 188; 7-2016; 309-3211364-5498CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C5FD00143Ainfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/FD/C5FD00143Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:38:02Zoai:ri.conicet.gov.ar:11336/19490instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:38:03.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Supports and Modified Nano-particles in Designing Model Catalysts |
| title |
Supports and Modified Nano-particles in Designing Model Catalysts |
| spellingShingle |
Supports and Modified Nano-particles in Designing Model Catalysts Obrien, C. P. oxide-metal interface nanoparticle properties activation of particles hydrogenation reactions |
| title_short |
Supports and Modified Nano-particles in Designing Model Catalysts |
| title_full |
Supports and Modified Nano-particles in Designing Model Catalysts |
| title_fullStr |
Supports and Modified Nano-particles in Designing Model Catalysts |
| title_full_unstemmed |
Supports and Modified Nano-particles in Designing Model Catalysts |
| title_sort |
Supports and Modified Nano-particles in Designing Model Catalysts |
| dc.creator.none.fl_str_mv |
Obrien, C. P. Dostert, K. H. Hollerer, M. Stiehler, Christian Calaza, Florencia Carolina Schauermann, S. Shaikhutdinov, S. Sterrer, M. Freund, H. J. |
| author |
Obrien, C. P. |
| author_facet |
Obrien, C. P. Dostert, K. H. Hollerer, M. Stiehler, Christian Calaza, Florencia Carolina Schauermann, S. Shaikhutdinov, S. Sterrer, M. Freund, H. J. |
| author_role |
author |
| author2 |
Dostert, K. H. Hollerer, M. Stiehler, Christian Calaza, Florencia Carolina Schauermann, S. Shaikhutdinov, S. Sterrer, M. Freund, H. J. |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
oxide-metal interface nanoparticle properties activation of particles hydrogenation reactions |
| topic |
oxide-metal interface nanoparticle properties activation of particles hydrogenation reactions |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles. Fil: Obrien, C. P.. US Army Research Laboratory; Estados Unidos Fil: Dostert, K. H.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania Fil: Hollerer, M.. University of Graz; Austria Fil: Stiehler, Christian. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania Fil: Schauermann, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania Fil: Shaikhutdinov, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania Fil: Sterrer, M.. University of Graz; Austria Fil: Freund, H. J.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania |
| description |
In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19490 Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; et al.; Supports and Modified Nano-particles in Designing Model Catalysts; Royal Society Of Chemistry; Faraday Discussions; 188; 7-2016; 309-321 1364-5498 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/19490 |
| identifier_str_mv |
Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; et al.; Supports and Modified Nano-particles in Designing Model Catalysts; Royal Society Of Chemistry; Faraday Discussions; 188; 7-2016; 309-321 1364-5498 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C5FD00143A info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/FD/C5FD00143A |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society Of Chemistry |
| publisher.none.fl_str_mv |
Royal Society Of Chemistry |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335759721234432 |
| score |
12.441415 |