Supports and Modified Nano-particles in Designing Model Catalysts

Autores
Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; Schauermann, S.; Shaikhutdinov, S.; Sterrer, M.; Freund, H. J.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles.
Fil: Obrien, C. P.. US Army Research Laboratory; Estados Unidos
Fil: Dostert, K. H.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Hollerer, M.. University of Graz; Austria
Fil: Stiehler, Christian. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Schauermann, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Shaikhutdinov, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Sterrer, M.. University of Graz; Austria
Fil: Freund, H. J.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Materia
oxide-metal interface
nanoparticle properties
activation of particles
hydrogenation reactions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19490

id CONICETDig_734168b49f21fde2bbec9a42e80f6edd
oai_identifier_str oai:ri.conicet.gov.ar:11336/19490
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Supports and Modified Nano-particles in Designing Model CatalystsObrien, C. P.Dostert, K. H.Hollerer, M.Stiehler, ChristianCalaza, Florencia CarolinaSchauermann, S.Shaikhutdinov, S.Sterrer, M.Freund, H. J.oxide-metal interfacenanoparticle propertiesactivation of particleshydrogenation reactionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles.Fil: Obrien, C. P.. US Army Research Laboratory; Estados UnidosFil: Dostert, K. H.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Hollerer, M.. University of Graz; AustriaFil: Stiehler, Christian. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Schauermann, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Shaikhutdinov, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaFil: Sterrer, M.. University of Graz; AustriaFil: Freund, H. J.. Fritz-Haber Institut der Max-Planck Gesellschaft; AlemaniaRoyal Society Of Chemistry2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19490Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; et al.; Supports and Modified Nano-particles in Designing Model Catalysts; Royal Society Of Chemistry; Faraday Discussions; 188; 7-2016; 309-3211364-5498CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C5FD00143Ainfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/FD/C5FD00143Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:38:02Zoai:ri.conicet.gov.ar:11336/19490instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:38:03.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Supports and Modified Nano-particles in Designing Model Catalysts
title Supports and Modified Nano-particles in Designing Model Catalysts
spellingShingle Supports and Modified Nano-particles in Designing Model Catalysts
Obrien, C. P.
oxide-metal interface
nanoparticle properties
activation of particles
hydrogenation reactions
title_short Supports and Modified Nano-particles in Designing Model Catalysts
title_full Supports and Modified Nano-particles in Designing Model Catalysts
title_fullStr Supports and Modified Nano-particles in Designing Model Catalysts
title_full_unstemmed Supports and Modified Nano-particles in Designing Model Catalysts
title_sort Supports and Modified Nano-particles in Designing Model Catalysts
dc.creator.none.fl_str_mv Obrien, C. P.
Dostert, K. H.
Hollerer, M.
Stiehler, Christian
Calaza, Florencia Carolina
Schauermann, S.
Shaikhutdinov, S.
Sterrer, M.
Freund, H. J.
author Obrien, C. P.
author_facet Obrien, C. P.
Dostert, K. H.
Hollerer, M.
Stiehler, Christian
Calaza, Florencia Carolina
Schauermann, S.
Shaikhutdinov, S.
Sterrer, M.
Freund, H. J.
author_role author
author2 Dostert, K. H.
Hollerer, M.
Stiehler, Christian
Calaza, Florencia Carolina
Schauermann, S.
Shaikhutdinov, S.
Sterrer, M.
Freund, H. J.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv oxide-metal interface
nanoparticle properties
activation of particles
hydrogenation reactions
topic oxide-metal interface
nanoparticle properties
activation of particles
hydrogenation reactions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles.
Fil: Obrien, C. P.. US Army Research Laboratory; Estados Unidos
Fil: Dostert, K. H.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Hollerer, M.. University of Graz; Austria
Fil: Stiehler, Christian. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Schauermann, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Shaikhutdinov, S.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
Fil: Sterrer, M.. University of Graz; Austria
Fil: Freund, H. J.. Fritz-Haber Institut der Max-Planck Gesellschaft; Alemania
description In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: a) the effect of the oxide-metal interface on metal-nanoparticle properties and b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, those two aspects are intimately linked. The metal-nanoparticles electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, those changes the chemistry leading to changes in the reaction path. As the morphology of the particle varies, facets of different orientation and size are exposed which may lead to a change in surface chemistry as well. We use two specific reactions to address those issues in some detail. To the best of our knowledge the present paper reports the first observations of this kind for well-defined model systems. The changes of the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl) as formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C-O vs. the C-C bond on Pd(111) when compared with oxide supported Pd nanoparticles.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19490
Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; et al.; Supports and Modified Nano-particles in Designing Model Catalysts; Royal Society Of Chemistry; Faraday Discussions; 188; 7-2016; 309-321
1364-5498
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19490
identifier_str_mv Obrien, C. P.; Dostert, K. H.; Hollerer, M.; Stiehler, Christian; Calaza, Florencia Carolina; et al.; Supports and Modified Nano-particles in Designing Model Catalysts; Royal Society Of Chemistry; Faraday Discussions; 188; 7-2016; 309-321
1364-5498
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C5FD00143A
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/FD/C5FD00143A
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society Of Chemistry
publisher.none.fl_str_mv Royal Society Of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335759721234432
score 12.441415