Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions

Autores
Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; Campbell, Charles T.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Mao, Zhongtian. University of Washington; Estados Unidos
Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; Argentina
Fil: Campbell, Charles T.. University of Washington; Estados Unidos
Materia
CERIA SUPPORT
DRY REFORMING
METAL-SUPPORT INTERACTION
METAL/OXIDE INTERFACE
METHANE TO METHANOL
NI NANOPARTICLES
PARTICLE SIZE EFFECT
SELECTIVE OXIDATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211842

id CONICETDig_34fedecff4e390d98c3f1b55a2a5fcf5
oai_identifier_str oai:ri.conicet.gov.ar:11336/211842
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nature of the Active Sites on Ni/CeO2Catalysts for Methane ConversionsLustemberg, Pablo GermanMao, ZhongtianSalcedo, AgustínIrigoyen, Beatriz del LujánGanduglia Pirovano, M. VerónicaCampbell, Charles T.CERIA SUPPORTDRY REFORMINGMETAL-SUPPORT INTERACTIONMETAL/OXIDE INTERFACEMETHANE TO METHANOLNI NANOPARTICLESPARTICLE SIZE EFFECTSELECTIVE OXIDATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Mao, Zhongtian. University of Washington; Estados UnidosFil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; ArgentinaFil: Campbell, Charles T.. University of Washington; Estados UnidosAmerican Chemical Society2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211842Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; et al.; Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions; American Chemical Society; ACS Catalysis; 11; 16; 8-2021; 10604-106132155-5435CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c02154info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c02154info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:06Zoai:ri.conicet.gov.ar:11336/211842instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:06.754CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
title Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
spellingShingle Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
Lustemberg, Pablo German
CERIA SUPPORT
DRY REFORMING
METAL-SUPPORT INTERACTION
METAL/OXIDE INTERFACE
METHANE TO METHANOL
NI NANOPARTICLES
PARTICLE SIZE EFFECT
SELECTIVE OXIDATION
title_short Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
title_full Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
title_fullStr Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
title_full_unstemmed Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
title_sort Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
dc.creator.none.fl_str_mv Lustemberg, Pablo German
Mao, Zhongtian
Salcedo, Agustín
Irigoyen, Beatriz del Luján
Ganduglia Pirovano, M. Verónica
Campbell, Charles T.
author Lustemberg, Pablo German
author_facet Lustemberg, Pablo German
Mao, Zhongtian
Salcedo, Agustín
Irigoyen, Beatriz del Luján
Ganduglia Pirovano, M. Verónica
Campbell, Charles T.
author_role author
author2 Mao, Zhongtian
Salcedo, Agustín
Irigoyen, Beatriz del Luján
Ganduglia Pirovano, M. Verónica
Campbell, Charles T.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv CERIA SUPPORT
DRY REFORMING
METAL-SUPPORT INTERACTION
METAL/OXIDE INTERFACE
METHANE TO METHANOL
NI NANOPARTICLES
PARTICLE SIZE EFFECT
SELECTIVE OXIDATION
topic CERIA SUPPORT
DRY REFORMING
METAL-SUPPORT INTERACTION
METAL/OXIDE INTERFACE
METHANE TO METHANOL
NI NANOPARTICLES
PARTICLE SIZE EFFECT
SELECTIVE OXIDATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Mao, Zhongtian. University of Washington; Estados Unidos
Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; Argentina
Fil: Campbell, Charles T.. University of Washington; Estados Unidos
description Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211842
Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; et al.; Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions; American Chemical Society; ACS Catalysis; 11; 16; 8-2021; 10604-10613
2155-5435
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211842
identifier_str_mv Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; et al.; Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions; American Chemical Society; ACS Catalysis; 11; 16; 8-2021; 10604-10613
2155-5435
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c02154
info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c02154
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613054001577984
score 13.070432