Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions
- Autores
- Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; Campbell, Charles T.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Mao, Zhongtian. University of Washington; Estados Unidos
Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; Argentina
Fil: Campbell, Charles T.. University of Washington; Estados Unidos - Materia
-
CERIA SUPPORT
DRY REFORMING
METAL-SUPPORT INTERACTION
METAL/OXIDE INTERFACE
METHANE TO METHANOL
NI NANOPARTICLES
PARTICLE SIZE EFFECT
SELECTIVE OXIDATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/211842
Ver los metadatos del registro completo
id |
CONICETDig_34fedecff4e390d98c3f1b55a2a5fcf5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/211842 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane ConversionsLustemberg, Pablo GermanMao, ZhongtianSalcedo, AgustínIrigoyen, Beatriz del LujánGanduglia Pirovano, M. VerónicaCampbell, Charles T.CERIA SUPPORTDRY REFORMINGMETAL-SUPPORT INTERACTIONMETAL/OXIDE INTERFACEMETHANE TO METHANOLNI NANOPARTICLESPARTICLE SIZE EFFECTSELECTIVE OXIDATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Mao, Zhongtian. University of Washington; Estados UnidosFil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; ArgentinaFil: Campbell, Charles T.. University of Washington; Estados UnidosAmerican Chemical Society2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211842Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; et al.; Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions; American Chemical Society; ACS Catalysis; 11; 16; 8-2021; 10604-106132155-5435CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c02154info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c02154info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:06Zoai:ri.conicet.gov.ar:11336/211842instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:06.754CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
title |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
spellingShingle |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions Lustemberg, Pablo German CERIA SUPPORT DRY REFORMING METAL-SUPPORT INTERACTION METAL/OXIDE INTERFACE METHANE TO METHANOL NI NANOPARTICLES PARTICLE SIZE EFFECT SELECTIVE OXIDATION |
title_short |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
title_full |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
title_fullStr |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
title_full_unstemmed |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
title_sort |
Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions |
dc.creator.none.fl_str_mv |
Lustemberg, Pablo German Mao, Zhongtian Salcedo, Agustín Irigoyen, Beatriz del Luján Ganduglia Pirovano, M. Verónica Campbell, Charles T. |
author |
Lustemberg, Pablo German |
author_facet |
Lustemberg, Pablo German Mao, Zhongtian Salcedo, Agustín Irigoyen, Beatriz del Luján Ganduglia Pirovano, M. Verónica Campbell, Charles T. |
author_role |
author |
author2 |
Mao, Zhongtian Salcedo, Agustín Irigoyen, Beatriz del Luján Ganduglia Pirovano, M. Verónica Campbell, Charles T. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CERIA SUPPORT DRY REFORMING METAL-SUPPORT INTERACTION METAL/OXIDE INTERFACE METHANE TO METHANOL NI NANOPARTICLES PARTICLE SIZE EFFECT SELECTIVE OXIDATION |
topic |
CERIA SUPPORT DRY REFORMING METAL-SUPPORT INTERACTION METAL/OXIDE INTERFACE METHANE TO METHANOL NI NANOPARTICLES PARTICLE SIZE EFFECT SELECTIVE OXIDATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions. Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Mao, Zhongtian. University of Washington; Estados Unidos Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina Fil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; Argentina Fil: Campbell, Charles T.. University of Washington; Estados Unidos |
description |
Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/211842 Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; et al.; Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions; American Chemical Society; ACS Catalysis; 11; 16; 8-2021; 10604-10613 2155-5435 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/211842 |
identifier_str_mv |
Lustemberg, Pablo German; Mao, Zhongtian; Salcedo, Agustín; Irigoyen, Beatriz del Luján; Ganduglia Pirovano, M. Verónica; et al.; Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions; American Chemical Society; ACS Catalysis; 11; 16; 8-2021; 10604-10613 2155-5435 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c02154 info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c02154 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613054001577984 |
score |
13.070432 |