Elastic distortion determining conduction in BiFeO3phase boundaries

Autores
Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; Guy, Joseph G. M.; Browne, Niall; Gupta, Arunava; Gregg, J. Marty; Kumar, Amit; Arredondo, Miryam
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal is
Fil: Holsgrove, Kristina M.. The Queens University of Belfast; Irlanda
Fil: Duchamp, Martial. Ernst Ruska-centre For Microscopy And Spectroscopy With Electrons; Alemania. Nanyang Technological University; Singapur
Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Bernier, Nicolas. Universite Grenoble Alpes; Francia
Fil: Naden, Aaron B.. The Queens University of Belfast; Irlanda. University of St. Andrews; Reino Unido
Fil: Guy, Joseph G. M.. The Queens University of Belfast; Irlanda
Fil: Browne, Niall. The Queens University of Belfast; Irlanda
Fil: Gupta, Arunava. University Of Alabama; Estados Unidos
Fil: Gregg, J. Marty. The Queens University of Belfast; Irlanda
Fil: Kumar, Amit. The Queens University of Belfast; Irlanda
Fil: Arredondo, Miryam. The Queens University of Belfast; Irlanda
Materia
BiFeO3
thin films
EELS
STEM-HAADF
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146746

id CONICETDig_733ed5b46fc0f263b6811a670d39c2b8
oai_identifier_str oai:ri.conicet.gov.ar:11336/146746
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Elastic distortion determining conduction in BiFeO3phase boundariesHolsgrove, Kristina M.Duchamp, MartialMoreno, Mario Sergio JesusBernier, NicolasNaden, Aaron B.Guy, Joseph G. M.Browne, NiallGupta, ArunavaGregg, J. MartyKumar, AmitArredondo, MiryamBiFeO3thin filmsEELSSTEM-HAADFhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal isFil: Holsgrove, Kristina M.. The Queens University of Belfast; IrlandaFil: Duchamp, Martial. Ernst Ruska-centre For Microscopy And Spectroscopy With Electrons; Alemania. Nanyang Technological University; SingapurFil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Bernier, Nicolas. Universite Grenoble Alpes; FranciaFil: Naden, Aaron B.. The Queens University of Belfast; Irlanda. University of St. Andrews; Reino UnidoFil: Guy, Joseph G. M.. The Queens University of Belfast; IrlandaFil: Browne, Niall. The Queens University of Belfast; IrlandaFil: Gupta, Arunava. University Of Alabama; Estados UnidosFil: Gregg, J. Marty. The Queens University of Belfast; IrlandaFil: Kumar, Amit. The Queens University of Belfast; IrlandaFil: Arredondo, Miryam. The Queens University of Belfast; IrlandaRoyal Society of Chemistry2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146746Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; et al.; Elastic distortion determining conduction in BiFeO3phase boundaries; Royal Society of Chemistry; RSC Advances; 10; 47; 7-2020; 27954-279602046-2069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d0ra04358cinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/RA/D0RA04358Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:04Zoai:ri.conicet.gov.ar:11336/146746instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:04.851CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Elastic distortion determining conduction in BiFeO3phase boundaries
title Elastic distortion determining conduction in BiFeO3phase boundaries
spellingShingle Elastic distortion determining conduction in BiFeO3phase boundaries
Holsgrove, Kristina M.
BiFeO3
thin films
EELS
STEM-HAADF
title_short Elastic distortion determining conduction in BiFeO3phase boundaries
title_full Elastic distortion determining conduction in BiFeO3phase boundaries
title_fullStr Elastic distortion determining conduction in BiFeO3phase boundaries
title_full_unstemmed Elastic distortion determining conduction in BiFeO3phase boundaries
title_sort Elastic distortion determining conduction in BiFeO3phase boundaries
dc.creator.none.fl_str_mv Holsgrove, Kristina M.
Duchamp, Martial
Moreno, Mario Sergio Jesus
Bernier, Nicolas
Naden, Aaron B.
Guy, Joseph G. M.
Browne, Niall
Gupta, Arunava
Gregg, J. Marty
Kumar, Amit
Arredondo, Miryam
author Holsgrove, Kristina M.
author_facet Holsgrove, Kristina M.
Duchamp, Martial
Moreno, Mario Sergio Jesus
Bernier, Nicolas
Naden, Aaron B.
Guy, Joseph G. M.
Browne, Niall
Gupta, Arunava
Gregg, J. Marty
Kumar, Amit
Arredondo, Miryam
author_role author
author2 Duchamp, Martial
Moreno, Mario Sergio Jesus
Bernier, Nicolas
Naden, Aaron B.
Guy, Joseph G. M.
Browne, Niall
Gupta, Arunava
Gregg, J. Marty
Kumar, Amit
Arredondo, Miryam
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BiFeO3
thin films
EELS
STEM-HAADF
topic BiFeO3
thin films
EELS
STEM-HAADF
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal is
Fil: Holsgrove, Kristina M.. The Queens University of Belfast; Irlanda
Fil: Duchamp, Martial. Ernst Ruska-centre For Microscopy And Spectroscopy With Electrons; Alemania. Nanyang Technological University; Singapur
Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Bernier, Nicolas. Universite Grenoble Alpes; Francia
Fil: Naden, Aaron B.. The Queens University of Belfast; Irlanda. University of St. Andrews; Reino Unido
Fil: Guy, Joseph G. M.. The Queens University of Belfast; Irlanda
Fil: Browne, Niall. The Queens University of Belfast; Irlanda
Fil: Gupta, Arunava. University Of Alabama; Estados Unidos
Fil: Gregg, J. Marty. The Queens University of Belfast; Irlanda
Fil: Kumar, Amit. The Queens University of Belfast; Irlanda
Fil: Arredondo, Miryam. The Queens University of Belfast; Irlanda
description It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal is
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146746
Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; et al.; Elastic distortion determining conduction in BiFeO3phase boundaries; Royal Society of Chemistry; RSC Advances; 10; 47; 7-2020; 27954-27960
2046-2069
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146746
identifier_str_mv Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; et al.; Elastic distortion determining conduction in BiFeO3phase boundaries; Royal Society of Chemistry; RSC Advances; 10; 47; 7-2020; 27954-27960
2046-2069
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/d0ra04358c
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/RA/D0RA04358C
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268643604299776
score 13.13397