Elastic distortion determining conduction in BiFeO3phase boundaries
- Autores
- Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; Guy, Joseph G. M.; Browne, Niall; Gupta, Arunava; Gregg, J. Marty; Kumar, Amit; Arredondo, Miryam
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal is
Fil: Holsgrove, Kristina M.. The Queens University of Belfast; Irlanda
Fil: Duchamp, Martial. Ernst Ruska-centre For Microscopy And Spectroscopy With Electrons; Alemania. Nanyang Technological University; Singapur
Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Bernier, Nicolas. Universite Grenoble Alpes; Francia
Fil: Naden, Aaron B.. The Queens University of Belfast; Irlanda. University of St. Andrews; Reino Unido
Fil: Guy, Joseph G. M.. The Queens University of Belfast; Irlanda
Fil: Browne, Niall. The Queens University of Belfast; Irlanda
Fil: Gupta, Arunava. University Of Alabama; Estados Unidos
Fil: Gregg, J. Marty. The Queens University of Belfast; Irlanda
Fil: Kumar, Amit. The Queens University of Belfast; Irlanda
Fil: Arredondo, Miryam. The Queens University of Belfast; Irlanda - Materia
-
BiFeO3
thin films
EELS
STEM-HAADF - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146746
Ver los metadatos del registro completo
id |
CONICETDig_733ed5b46fc0f263b6811a670d39c2b8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146746 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Elastic distortion determining conduction in BiFeO3phase boundariesHolsgrove, Kristina M.Duchamp, MartialMoreno, Mario Sergio JesusBernier, NicolasNaden, Aaron B.Guy, Joseph G. M.Browne, NiallGupta, ArunavaGregg, J. MartyKumar, AmitArredondo, MiryamBiFeO3thin filmsEELSSTEM-HAADFhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal isFil: Holsgrove, Kristina M.. The Queens University of Belfast; IrlandaFil: Duchamp, Martial. Ernst Ruska-centre For Microscopy And Spectroscopy With Electrons; Alemania. Nanyang Technological University; SingapurFil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Bernier, Nicolas. Universite Grenoble Alpes; FranciaFil: Naden, Aaron B.. The Queens University of Belfast; Irlanda. University of St. Andrews; Reino UnidoFil: Guy, Joseph G. M.. The Queens University of Belfast; IrlandaFil: Browne, Niall. The Queens University of Belfast; IrlandaFil: Gupta, Arunava. University Of Alabama; Estados UnidosFil: Gregg, J. Marty. The Queens University of Belfast; IrlandaFil: Kumar, Amit. The Queens University of Belfast; IrlandaFil: Arredondo, Miryam. The Queens University of Belfast; IrlandaRoyal Society of Chemistry2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146746Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; et al.; Elastic distortion determining conduction in BiFeO3phase boundaries; Royal Society of Chemistry; RSC Advances; 10; 47; 7-2020; 27954-279602046-2069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d0ra04358cinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/RA/D0RA04358Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:04Zoai:ri.conicet.gov.ar:11336/146746instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:04.851CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Elastic distortion determining conduction in BiFeO3phase boundaries |
title |
Elastic distortion determining conduction in BiFeO3phase boundaries |
spellingShingle |
Elastic distortion determining conduction in BiFeO3phase boundaries Holsgrove, Kristina M. BiFeO3 thin films EELS STEM-HAADF |
title_short |
Elastic distortion determining conduction in BiFeO3phase boundaries |
title_full |
Elastic distortion determining conduction in BiFeO3phase boundaries |
title_fullStr |
Elastic distortion determining conduction in BiFeO3phase boundaries |
title_full_unstemmed |
Elastic distortion determining conduction in BiFeO3phase boundaries |
title_sort |
Elastic distortion determining conduction in BiFeO3phase boundaries |
dc.creator.none.fl_str_mv |
Holsgrove, Kristina M. Duchamp, Martial Moreno, Mario Sergio Jesus Bernier, Nicolas Naden, Aaron B. Guy, Joseph G. M. Browne, Niall Gupta, Arunava Gregg, J. Marty Kumar, Amit Arredondo, Miryam |
author |
Holsgrove, Kristina M. |
author_facet |
Holsgrove, Kristina M. Duchamp, Martial Moreno, Mario Sergio Jesus Bernier, Nicolas Naden, Aaron B. Guy, Joseph G. M. Browne, Niall Gupta, Arunava Gregg, J. Marty Kumar, Amit Arredondo, Miryam |
author_role |
author |
author2 |
Duchamp, Martial Moreno, Mario Sergio Jesus Bernier, Nicolas Naden, Aaron B. Guy, Joseph G. M. Browne, Niall Gupta, Arunava Gregg, J. Marty Kumar, Amit Arredondo, Miryam |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
BiFeO3 thin films EELS STEM-HAADF |
topic |
BiFeO3 thin films EELS STEM-HAADF |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal is Fil: Holsgrove, Kristina M.. The Queens University of Belfast; Irlanda Fil: Duchamp, Martial. Ernst Ruska-centre For Microscopy And Spectroscopy With Electrons; Alemania. Nanyang Technological University; Singapur Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Bernier, Nicolas. Universite Grenoble Alpes; Francia Fil: Naden, Aaron B.. The Queens University of Belfast; Irlanda. University of St. Andrews; Reino Unido Fil: Guy, Joseph G. M.. The Queens University of Belfast; Irlanda Fil: Browne, Niall. The Queens University of Belfast; Irlanda Fil: Gupta, Arunava. University Of Alabama; Estados Unidos Fil: Gregg, J. Marty. The Queens University of Belfast; Irlanda Fil: Kumar, Amit. The Queens University of Belfast; Irlanda Fil: Arredondo, Miryam. The Queens University of Belfast; Irlanda |
description |
It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident-detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3. This journal is |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146746 Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; et al.; Elastic distortion determining conduction in BiFeO3phase boundaries; Royal Society of Chemistry; RSC Advances; 10; 47; 7-2020; 27954-27960 2046-2069 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146746 |
identifier_str_mv |
Holsgrove, Kristina M.; Duchamp, Martial; Moreno, Mario Sergio Jesus; Bernier, Nicolas; Naden, Aaron B.; et al.; Elastic distortion determining conduction in BiFeO3phase boundaries; Royal Society of Chemistry; RSC Advances; 10; 47; 7-2020; 27954-27960 2046-2069 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/d0ra04358c info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/RA/D0RA04358C |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268643604299776 |
score |
13.13397 |