Complexity of energy eigenstates as a mechanism for equilibration

Autores
Masanes, Lluís; Roncaglia, Augusto Jose; Acín, Antonio
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding the mechanisms responsible for the equilibration of isolated quantum many-body systems is a long-standing open problem. In this work we obtain a statistical relationship between the equilibration properties of Hamiltonians and the complexity of their eigenvectors, provided that a conjecture about the incompressibility of quantum circuits holds. We quantify the complexity by the size of the smallest quantum circuit mapping the local basis onto the energy eigenbasis. Specifically, we consider the set of all Hamiltonians having complexity C, and show that almost all such Hamiltonians equilibrate if C is superquadratic in the system size, which includes the fully random Hamiltonian case in the limit C→∞, and do not equilibrate if C is sublinear. We also provide a simple formula for the equilibration time scale in terms of the Fourier transform of the level density. Our results are statistical and, therefore, do not apply to specific Hamiltonians. Yet they establish a fundamental link between equilibration and complexity theory.
Fil: Masanes, Lluís. ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;
Fil: Roncaglia, Augusto Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisica; Argentina; ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;
Fil: Acín, Antonio. ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;
Materia
Equilibration
Quantum complexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/645

id CONICETDig_72f07387e76bff6fdbd5631c2ce88604
oai_identifier_str oai:ri.conicet.gov.ar:11336/645
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Complexity of energy eigenstates as a mechanism for equilibrationMasanes, LluísRoncaglia, Augusto JoseAcín, AntonioEquilibrationQuantum complexityhttps://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3Understanding the mechanisms responsible for the equilibration of isolated quantum many-body systems is a long-standing open problem. In this work we obtain a statistical relationship between the equilibration properties of Hamiltonians and the complexity of their eigenvectors, provided that a conjecture about the incompressibility of quantum circuits holds. We quantify the complexity by the size of the smallest quantum circuit mapping the local basis onto the energy eigenbasis. Specifically, we consider the set of all Hamiltonians having complexity C, and show that almost all such Hamiltonians equilibrate if C is superquadratic in the system size, which includes the fully random Hamiltonian case in the limit C→∞, and do not equilibrate if C is sublinear. We also provide a simple formula for the equilibration time scale in terms of the Fourier transform of the level density. Our results are statistical and, therefore, do not apply to specific Hamiltonians. Yet they establish a fundamental link between equilibration and complexity theory.Fil: Masanes, Lluís. ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;Fil: Roncaglia, Augusto Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisica; Argentina; ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;Fil: Acín, Antonio. ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;Amer Physical Soc2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/645Masanes, Lluís; Roncaglia, Augusto Jose; Acín, Antonio; Complexity of energy eigenstates as a mechanism for equilibration; Amer Physical Soc; Physical Review E; 87; 3; 3-2013; 032137(9);1539-3755enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.87.032137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:28Zoai:ri.conicet.gov.ar:11336/645instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:29.263CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Complexity of energy eigenstates as a mechanism for equilibration
title Complexity of energy eigenstates as a mechanism for equilibration
spellingShingle Complexity of energy eigenstates as a mechanism for equilibration
Masanes, Lluís
Equilibration
Quantum complexity
title_short Complexity of energy eigenstates as a mechanism for equilibration
title_full Complexity of energy eigenstates as a mechanism for equilibration
title_fullStr Complexity of energy eigenstates as a mechanism for equilibration
title_full_unstemmed Complexity of energy eigenstates as a mechanism for equilibration
title_sort Complexity of energy eigenstates as a mechanism for equilibration
dc.creator.none.fl_str_mv Masanes, Lluís
Roncaglia, Augusto Jose
Acín, Antonio
author Masanes, Lluís
author_facet Masanes, Lluís
Roncaglia, Augusto Jose
Acín, Antonio
author_role author
author2 Roncaglia, Augusto Jose
Acín, Antonio
author2_role author
author
dc.subject.none.fl_str_mv Equilibration
Quantum complexity
topic Equilibration
Quantum complexity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
dc.description.none.fl_txt_mv Understanding the mechanisms responsible for the equilibration of isolated quantum many-body systems is a long-standing open problem. In this work we obtain a statistical relationship between the equilibration properties of Hamiltonians and the complexity of their eigenvectors, provided that a conjecture about the incompressibility of quantum circuits holds. We quantify the complexity by the size of the smallest quantum circuit mapping the local basis onto the energy eigenbasis. Specifically, we consider the set of all Hamiltonians having complexity C, and show that almost all such Hamiltonians equilibrate if C is superquadratic in the system size, which includes the fully random Hamiltonian case in the limit C→∞, and do not equilibrate if C is sublinear. We also provide a simple formula for the equilibration time scale in terms of the Fourier transform of the level density. Our results are statistical and, therefore, do not apply to specific Hamiltonians. Yet they establish a fundamental link between equilibration and complexity theory.
Fil: Masanes, Lluís. ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;
Fil: Roncaglia, Augusto Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisica; Argentina; ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;
Fil: Acín, Antonio. ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park; España;
description Understanding the mechanisms responsible for the equilibration of isolated quantum many-body systems is a long-standing open problem. In this work we obtain a statistical relationship between the equilibration properties of Hamiltonians and the complexity of their eigenvectors, provided that a conjecture about the incompressibility of quantum circuits holds. We quantify the complexity by the size of the smallest quantum circuit mapping the local basis onto the energy eigenbasis. Specifically, we consider the set of all Hamiltonians having complexity C, and show that almost all such Hamiltonians equilibrate if C is superquadratic in the system size, which includes the fully random Hamiltonian case in the limit C→∞, and do not equilibrate if C is sublinear. We also provide a simple formula for the equilibration time scale in terms of the Fourier transform of the level density. Our results are statistical and, therefore, do not apply to specific Hamiltonians. Yet they establish a fundamental link between equilibration and complexity theory.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/645
Masanes, Lluís; Roncaglia, Augusto Jose; Acín, Antonio; Complexity of energy eigenstates as a mechanism for equilibration; Amer Physical Soc; Physical Review E; 87; 3; 3-2013; 032137(9);
1539-3755
url http://hdl.handle.net/11336/645
identifier_str_mv Masanes, Lluís; Roncaglia, Augusto Jose; Acín, Antonio; Complexity of energy eigenstates as a mechanism for equilibration; Amer Physical Soc; Physical Review E; 87; 3; 3-2013; 032137(9);
1539-3755
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.87.032137
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Physical Soc
publisher.none.fl_str_mv Amer Physical Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614470194692096
score 13.070432