Assessing the saturation of Krylov complexity as a measure of chaos

Autores
Español, Bernardo Luciano; Wisniacki, Diego Ariel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Krylov complexity is a novel approach to study how an operator spreads over a specific basis. Recently, it has been stated that this quantity has a long-time saturation that depends on the amount of chaos in the system. Since this quantity not only depends on the Hamiltonian but also on the chosen operator, in this work we study the level of generality of this hypothesis by studying how the saturation value varies in the integrability to chaos transition when different operators are expanded. To do this, we work with an Ising chain with a longitudinal-transverse magnetic field and compare the saturation of the Krylov complexity with the standard spectral measure of quantum chaos. Our numerical results show that the usefulness of this quantity as a predictor of the chaoticity is strongly dependent on the chosen operator.
Fil: Español, Bernardo Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Quantum chaos
Krylov complexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224565

id CONICETDig_6691182896530b42dfecffeff7a0e6ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/224565
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessing the saturation of Krylov complexity as a measure of chaosEspañol, Bernardo LucianoWisniacki, Diego ArielQuantum chaosKrylov complexityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Krylov complexity is a novel approach to study how an operator spreads over a specific basis. Recently, it has been stated that this quantity has a long-time saturation that depends on the amount of chaos in the system. Since this quantity not only depends on the Hamiltonian but also on the chosen operator, in this work we study the level of generality of this hypothesis by studying how the saturation value varies in the integrability to chaos transition when different operators are expanded. To do this, we work with an Ising chain with a longitudinal-transverse magnetic field and compare the saturation of the Krylov complexity with the standard spectral measure of quantum chaos. Our numerical results show that the usefulness of this quantity as a predictor of the chaoticity is strongly dependent on the chosen operator.Fil: Español, Bernardo Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224565Español, Bernardo Luciano; Wisniacki, Diego Ariel; Assessing the saturation of Krylov complexity as a measure of chaos; American Physical Society; Physical Review E; 107; 2; 2-2023; 1-62470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.107.024217info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:25:28Zoai:ri.conicet.gov.ar:11336/224565instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:25:28.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessing the saturation of Krylov complexity as a measure of chaos
title Assessing the saturation of Krylov complexity as a measure of chaos
spellingShingle Assessing the saturation of Krylov complexity as a measure of chaos
Español, Bernardo Luciano
Quantum chaos
Krylov complexity
title_short Assessing the saturation of Krylov complexity as a measure of chaos
title_full Assessing the saturation of Krylov complexity as a measure of chaos
title_fullStr Assessing the saturation of Krylov complexity as a measure of chaos
title_full_unstemmed Assessing the saturation of Krylov complexity as a measure of chaos
title_sort Assessing the saturation of Krylov complexity as a measure of chaos
dc.creator.none.fl_str_mv Español, Bernardo Luciano
Wisniacki, Diego Ariel
author Español, Bernardo Luciano
author_facet Español, Bernardo Luciano
Wisniacki, Diego Ariel
author_role author
author2 Wisniacki, Diego Ariel
author2_role author
dc.subject.none.fl_str_mv Quantum chaos
Krylov complexity
topic Quantum chaos
Krylov complexity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Krylov complexity is a novel approach to study how an operator spreads over a specific basis. Recently, it has been stated that this quantity has a long-time saturation that depends on the amount of chaos in the system. Since this quantity not only depends on the Hamiltonian but also on the chosen operator, in this work we study the level of generality of this hypothesis by studying how the saturation value varies in the integrability to chaos transition when different operators are expanded. To do this, we work with an Ising chain with a longitudinal-transverse magnetic field and compare the saturation of the Krylov complexity with the standard spectral measure of quantum chaos. Our numerical results show that the usefulness of this quantity as a predictor of the chaoticity is strongly dependent on the chosen operator.
Fil: Español, Bernardo Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Krylov complexity is a novel approach to study how an operator spreads over a specific basis. Recently, it has been stated that this quantity has a long-time saturation that depends on the amount of chaos in the system. Since this quantity not only depends on the Hamiltonian but also on the chosen operator, in this work we study the level of generality of this hypothesis by studying how the saturation value varies in the integrability to chaos transition when different operators are expanded. To do this, we work with an Ising chain with a longitudinal-transverse magnetic field and compare the saturation of the Krylov complexity with the standard spectral measure of quantum chaos. Our numerical results show that the usefulness of this quantity as a predictor of the chaoticity is strongly dependent on the chosen operator.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224565
Español, Bernardo Luciano; Wisniacki, Diego Ariel; Assessing the saturation of Krylov complexity as a measure of chaos; American Physical Society; Physical Review E; 107; 2; 2-2023; 1-6
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224565
identifier_str_mv Español, Bernardo Luciano; Wisniacki, Diego Ariel; Assessing the saturation of Krylov complexity as a measure of chaos; American Physical Society; Physical Review E; 107; 2; 2-2023; 1-6
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.107.024217
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083399121371136
score 12.891075