Entanglement gap in 1D long-range quantum spherical models

Autores
Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the finite-size scaling of the entanglement gap in the one-dimensional long-range quantum spherical model (QSM). We focus on the weak long-range QSM, for which the thermodynamic limit is well-defined. This model exhibits a continuous phase transition, separating a paramagnetic from a ferromagnet phase. The universality class of the transition depends on the long-range exponent α. We show that in the thermodynamic limit the entanglement gap is finite in the paramagnetic phase, and it vanishes in the ferromagnetic phase. In the ferromagnetic phase the entanglement gap is understood in terms of standard magnetic correlation functions. The half-system entanglement gap decays as $\delta\xi\simeq C_\alpha L^{-(1/2-\alpha/4)}$, where the constant $C_\alpha$ depends on the low-energy properties of the model and L is the system size. This reflects that the lower part of the dispersion is affected by the long range physics. Finally, multiplicative logarithmic corrections are absent in the scaling of the entanglement gap, in contrast with the higher-dimensional case.
Fil: Wald, Sascha. Coventry University; Reino Unido
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Alba, Vincenzo. Università degli Studi di Pisa; Italia
Materia
Entanglement
Spherical Model
Long range interactions
Phase transition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242877

id CONICETDig_725974f097132dbe2182673abd854947
oai_identifier_str oai:ri.conicet.gov.ar:11336/242877
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement gap in 1D long-range quantum spherical modelsWald, SaschaArias, Raúl EduardoAlba, VincenzoEntanglementSpherical ModelLong range interactionsPhase transitionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the finite-size scaling of the entanglement gap in the one-dimensional long-range quantum spherical model (QSM). We focus on the weak long-range QSM, for which the thermodynamic limit is well-defined. This model exhibits a continuous phase transition, separating a paramagnetic from a ferromagnet phase. The universality class of the transition depends on the long-range exponent α. We show that in the thermodynamic limit the entanglement gap is finite in the paramagnetic phase, and it vanishes in the ferromagnetic phase. In the ferromagnetic phase the entanglement gap is understood in terms of standard magnetic correlation functions. The half-system entanglement gap decays as $\delta\xi\simeq C_\alpha L^{-(1/2-\alpha/4)}$, where the constant $C_\alpha$ depends on the low-energy properties of the model and L is the system size. This reflects that the lower part of the dispersion is affected by the long range physics. Finally, multiplicative logarithmic corrections are absent in the scaling of the entanglement gap, in contrast with the higher-dimensional case.Fil: Wald, Sascha. Coventry University; Reino UnidoFil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Alba, Vincenzo. Università degli Studi di Pisa; ItaliaIOP Publishing2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242877Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Entanglement gap in 1D long-range quantum spherical models; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 56; 24; 5-2023; 1-351751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/acd232info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/acd232info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:45:57Zoai:ri.conicet.gov.ar:11336/242877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:45:57.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement gap in 1D long-range quantum spherical models
title Entanglement gap in 1D long-range quantum spherical models
spellingShingle Entanglement gap in 1D long-range quantum spherical models
Wald, Sascha
Entanglement
Spherical Model
Long range interactions
Phase transition
title_short Entanglement gap in 1D long-range quantum spherical models
title_full Entanglement gap in 1D long-range quantum spherical models
title_fullStr Entanglement gap in 1D long-range quantum spherical models
title_full_unstemmed Entanglement gap in 1D long-range quantum spherical models
title_sort Entanglement gap in 1D long-range quantum spherical models
dc.creator.none.fl_str_mv Wald, Sascha
Arias, Raúl Eduardo
Alba, Vincenzo
author Wald, Sascha
author_facet Wald, Sascha
Arias, Raúl Eduardo
Alba, Vincenzo
author_role author
author2 Arias, Raúl Eduardo
Alba, Vincenzo
author2_role author
author
dc.subject.none.fl_str_mv Entanglement
Spherical Model
Long range interactions
Phase transition
topic Entanglement
Spherical Model
Long range interactions
Phase transition
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the finite-size scaling of the entanglement gap in the one-dimensional long-range quantum spherical model (QSM). We focus on the weak long-range QSM, for which the thermodynamic limit is well-defined. This model exhibits a continuous phase transition, separating a paramagnetic from a ferromagnet phase. The universality class of the transition depends on the long-range exponent α. We show that in the thermodynamic limit the entanglement gap is finite in the paramagnetic phase, and it vanishes in the ferromagnetic phase. In the ferromagnetic phase the entanglement gap is understood in terms of standard magnetic correlation functions. The half-system entanglement gap decays as $\delta\xi\simeq C_\alpha L^{-(1/2-\alpha/4)}$, where the constant $C_\alpha$ depends on the low-energy properties of the model and L is the system size. This reflects that the lower part of the dispersion is affected by the long range physics. Finally, multiplicative logarithmic corrections are absent in the scaling of the entanglement gap, in contrast with the higher-dimensional case.
Fil: Wald, Sascha. Coventry University; Reino Unido
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Alba, Vincenzo. Università degli Studi di Pisa; Italia
description We investigate the finite-size scaling of the entanglement gap in the one-dimensional long-range quantum spherical model (QSM). We focus on the weak long-range QSM, for which the thermodynamic limit is well-defined. This model exhibits a continuous phase transition, separating a paramagnetic from a ferromagnet phase. The universality class of the transition depends on the long-range exponent α. We show that in the thermodynamic limit the entanglement gap is finite in the paramagnetic phase, and it vanishes in the ferromagnetic phase. In the ferromagnetic phase the entanglement gap is understood in terms of standard magnetic correlation functions. The half-system entanglement gap decays as $\delta\xi\simeq C_\alpha L^{-(1/2-\alpha/4)}$, where the constant $C_\alpha$ depends on the low-energy properties of the model and L is the system size. This reflects that the lower part of the dispersion is affected by the long range physics. Finally, multiplicative logarithmic corrections are absent in the scaling of the entanglement gap, in contrast with the higher-dimensional case.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242877
Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Entanglement gap in 1D long-range quantum spherical models; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 56; 24; 5-2023; 1-35
1751-8113
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242877
identifier_str_mv Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Entanglement gap in 1D long-range quantum spherical models; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 56; 24; 5-2023; 1-35
1751-8113
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/acd232
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/acd232
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850505893339201536
score 13.214268