A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
- Autores
- Atiq, Omar; Merlonghi, Lorenzo; Castillo, Luciana Andrea; Barbosa, Silvia Elena; Giacinti Baschetti, Marco; De Angelis, Maria Grazia
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners.
Fil: Atiq, Omar. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido
Fil: Merlonghi, Lorenzo. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido
Fil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Giacinti Baschetti, Marco. Universidad de Bologna; Italia
Fil: De Angelis, Maria Grazia. Universidad de Bologna; Italia
33rd European Symposium on Applied Thermodynamics (ESAT 2024)
Reino Unido
The University of Edinburgh - Materia
-
HYDROGEN TRANSPORT PROPERTIES
SEMICRYSTALLINE POLYMERS
MULTISCALE MODELLING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244431
Ver los metadatos del registro completo
id |
CONICETDig_71ffc93009b089bbe3bc29e6febc3e60 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244431 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymersAtiq, OmarMerlonghi, LorenzoCastillo, Luciana AndreaBarbosa, Silvia ElenaGiacinti Baschetti, MarcoDe Angelis, Maria GraziaHYDROGEN TRANSPORT PROPERTIESSEMICRYSTALLINE POLYMERSMULTISCALE MODELLINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners.Fil: Atiq, Omar. Universidad de Bologna; Italia. University of Edinburgh; Reino UnidoFil: Merlonghi, Lorenzo. Universidad de Bologna; Italia. University of Edinburgh; Reino UnidoFil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Giacinti Baschetti, Marco. Universidad de Bologna; ItaliaFil: De Angelis, Maria Grazia. Universidad de Bologna; Italia33rd European Symposium on Applied Thermodynamics (ESAT 2024)Reino UnidoThe University of EdinburghUniversidad de Edimburgo2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244431A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers; 33rd European Symposium on Applied Thermodynamics (ESAT 2024); Reino Unido; 2024; 90-90CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.esat2024.eng.ed.ac.uk/sites/esat2024.eng.ed.ac.uk/files/ESAT_2024_Book_of_Abstracts.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:01Zoai:ri.conicet.gov.ar:11336/244431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:01.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
title |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
spellingShingle |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Atiq, Omar HYDROGEN TRANSPORT PROPERTIES SEMICRYSTALLINE POLYMERS MULTISCALE MODELLING |
title_short |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
title_full |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
title_fullStr |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
title_full_unstemmed |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
title_sort |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers |
dc.creator.none.fl_str_mv |
Atiq, Omar Merlonghi, Lorenzo Castillo, Luciana Andrea Barbosa, Silvia Elena Giacinti Baschetti, Marco De Angelis, Maria Grazia |
author |
Atiq, Omar |
author_facet |
Atiq, Omar Merlonghi, Lorenzo Castillo, Luciana Andrea Barbosa, Silvia Elena Giacinti Baschetti, Marco De Angelis, Maria Grazia |
author_role |
author |
author2 |
Merlonghi, Lorenzo Castillo, Luciana Andrea Barbosa, Silvia Elena Giacinti Baschetti, Marco De Angelis, Maria Grazia |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
HYDROGEN TRANSPORT PROPERTIES SEMICRYSTALLINE POLYMERS MULTISCALE MODELLING |
topic |
HYDROGEN TRANSPORT PROPERTIES SEMICRYSTALLINE POLYMERS MULTISCALE MODELLING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners. Fil: Atiq, Omar. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido Fil: Merlonghi, Lorenzo. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido Fil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Giacinti Baschetti, Marco. Universidad de Bologna; Italia Fil: De Angelis, Maria Grazia. Universidad de Bologna; Italia 33rd European Symposium on Applied Thermodynamics (ESAT 2024) Reino Unido The University of Edinburgh |
description |
A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Simposio Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244431 A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers; 33rd European Symposium on Applied Thermodynamics (ESAT 2024); Reino Unido; 2024; 90-90 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244431 |
identifier_str_mv |
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers; 33rd European Symposium on Applied Thermodynamics (ESAT 2024); Reino Unido; 2024; 90-90 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.esat2024.eng.ed.ac.uk/sites/esat2024.eng.ed.ac.uk/files/ESAT_2024_Book_of_Abstracts.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Universidad de Edimburgo |
publisher.none.fl_str_mv |
Universidad de Edimburgo |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613819909799936 |
score |
13.070432 |