A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers

Autores
Atiq, Omar; Merlonghi, Lorenzo; Castillo, Luciana Andrea; Barbosa, Silvia Elena; Giacinti Baschetti, Marco; De Angelis, Maria Grazia
Año de publicación
2024
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners.
Fil: Atiq, Omar. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido
Fil: Merlonghi, Lorenzo. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido
Fil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Giacinti Baschetti, Marco. Universidad de Bologna; Italia
Fil: De Angelis, Maria Grazia. Universidad de Bologna; Italia
33rd European Symposium on Applied Thermodynamics (ESAT 2024)
Reino Unido
The University of Edinburgh
Materia
HYDROGEN TRANSPORT PROPERTIES
SEMICRYSTALLINE POLYMERS
MULTISCALE MODELLING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/244431

id CONICETDig_71ffc93009b089bbe3bc29e6febc3e60
oai_identifier_str oai:ri.conicet.gov.ar:11336/244431
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymersAtiq, OmarMerlonghi, LorenzoCastillo, Luciana AndreaBarbosa, Silvia ElenaGiacinti Baschetti, MarcoDe Angelis, Maria GraziaHYDROGEN TRANSPORT PROPERTIESSEMICRYSTALLINE POLYMERSMULTISCALE MODELLINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners.Fil: Atiq, Omar. Universidad de Bologna; Italia. University of Edinburgh; Reino UnidoFil: Merlonghi, Lorenzo. Universidad de Bologna; Italia. University of Edinburgh; Reino UnidoFil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Giacinti Baschetti, Marco. Universidad de Bologna; ItaliaFil: De Angelis, Maria Grazia. Universidad de Bologna; Italia33rd European Symposium on Applied Thermodynamics (ESAT 2024)Reino UnidoThe University of EdinburghUniversidad de Edimburgo2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244431A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers; 33rd European Symposium on Applied Thermodynamics (ESAT 2024); Reino Unido; 2024; 90-90CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.esat2024.eng.ed.ac.uk/sites/esat2024.eng.ed.ac.uk/files/ESAT_2024_Book_of_Abstracts.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:01Zoai:ri.conicet.gov.ar:11336/244431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:01.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
title A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
spellingShingle A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
Atiq, Omar
HYDROGEN TRANSPORT PROPERTIES
SEMICRYSTALLINE POLYMERS
MULTISCALE MODELLING
title_short A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
title_full A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
title_fullStr A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
title_full_unstemmed A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
title_sort A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers
dc.creator.none.fl_str_mv Atiq, Omar
Merlonghi, Lorenzo
Castillo, Luciana Andrea
Barbosa, Silvia Elena
Giacinti Baschetti, Marco
De Angelis, Maria Grazia
author Atiq, Omar
author_facet Atiq, Omar
Merlonghi, Lorenzo
Castillo, Luciana Andrea
Barbosa, Silvia Elena
Giacinti Baschetti, Marco
De Angelis, Maria Grazia
author_role author
author2 Merlonghi, Lorenzo
Castillo, Luciana Andrea
Barbosa, Silvia Elena
Giacinti Baschetti, Marco
De Angelis, Maria Grazia
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv HYDROGEN TRANSPORT PROPERTIES
SEMICRYSTALLINE POLYMERS
MULTISCALE MODELLING
topic HYDROGEN TRANSPORT PROPERTIES
SEMICRYSTALLINE POLYMERS
MULTISCALE MODELLING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners.
Fil: Atiq, Omar. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido
Fil: Merlonghi, Lorenzo. Universidad de Bologna; Italia. University of Edinburgh; Reino Unido
Fil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Giacinti Baschetti, Marco. Universidad de Bologna; Italia
Fil: De Angelis, Maria Grazia. Universidad de Bologna; Italia
33rd European Symposium on Applied Thermodynamics (ESAT 2024)
Reino Unido
The University of Edinburgh
description A multiscale modelling platform was developed for the prediction of both hydrogen sorption and diffusion coefficients in HDPE; the permeability across the material was ultimately estimated according to the solution-diffusion model. Molecular Dynamics (MD) simulations of semi-crystalline HDPE structures having tailored fractions of intercrystalline connections (tie-chains), representative of different thermal histories, were carried out. The sorption coefficient was estimated by means of the Lattice Fluid Equation of State which was fully parametrized on the MD simulation results [1]. The diffusion coefficient was evaluated from the Mean Square Displacement (MSD) of hydrogen molecules within the structures during MD simulations and scaling the latter with the impermeable crystalline domains induced tortuosity which was reproduced using a Finite Volume model of the 3D spherulitic morphology. At experimental level, a time-lag equipment was used to determine diffusivity and permeability on the different polyethylene samples whose degree of crystallinity was determined through X-Ray analysis. The modelling strategy allowed to establish useful correlations between the polymer molecular structure and the barrier performance paving the way for an enhanced screening and optimization of hydrogen polymeric liners.
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Simposio
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/244431
A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers; 33rd European Symposium on Applied Thermodynamics (ESAT 2024); Reino Unido; 2024; 90-90
CONICET Digital
CONICET
url http://hdl.handle.net/11336/244431
identifier_str_mv A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers; 33rd European Symposium on Applied Thermodynamics (ESAT 2024); Reino Unido; 2024; 90-90
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.esat2024.eng.ed.ac.uk/sites/esat2024.eng.ed.ac.uk/files/ESAT_2024_Book_of_Abstracts.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Universidad de Edimburgo
publisher.none.fl_str_mv Universidad de Edimburgo
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613819909799936
score 13.070432