Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case
- Autores
- Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented and compared with those obtained by means of the Rayleigh method, showing that both the differential method and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted Floquet harmonics.
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos. Imperial College London; Reino Unido - Materia
-
ANISOTROPY
DIFFRACTION
ELLIPTIC DISPERSION EQUATION
GRATING
HYPERBOLIC DISPERSION EQUATION
NEGATIVE REFRACTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/71111
Ver los metadatos del registro completo
id |
CONICETDig_71d0de98dacf107c1e63708d278a5145 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/71111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar caseDepine, Ricardo AngelInchaussandague, Marina ElizabethLakhtakia, AkhleshANISOTROPYDIFFRACTIONELLIPTIC DISPERSION EQUATIONGRATINGHYPERBOLIC DISPERSION EQUATIONNEGATIVE REFRACTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented and compared with those obtained by means of the Rayleigh method, showing that both the differential method and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted Floquet harmonics.Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos. Imperial College London; Reino UnidoElsevier Science2006-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71111Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case; Elsevier Science; Optics Communications; 258; 2; 2-2006; 90-960030-4018CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0030401805007789info:eu-repo/semantics/altIdentifier/doi/10.1016/j.optcom.2005.07.067info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:33Zoai:ri.conicet.gov.ar:11336/71111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:33.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
title |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
spellingShingle |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case Depine, Ricardo Angel ANISOTROPY DIFFRACTION ELLIPTIC DISPERSION EQUATION GRATING HYPERBOLIC DISPERSION EQUATION NEGATIVE REFRACTION |
title_short |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
title_full |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
title_fullStr |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
title_full_unstemmed |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
title_sort |
Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case |
dc.creator.none.fl_str_mv |
Depine, Ricardo Angel Inchaussandague, Marina Elizabeth Lakhtakia, Akhlesh |
author |
Depine, Ricardo Angel |
author_facet |
Depine, Ricardo Angel Inchaussandague, Marina Elizabeth Lakhtakia, Akhlesh |
author_role |
author |
author2 |
Inchaussandague, Marina Elizabeth Lakhtakia, Akhlesh |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANISOTROPY DIFFRACTION ELLIPTIC DISPERSION EQUATION GRATING HYPERBOLIC DISPERSION EQUATION NEGATIVE REFRACTION |
topic |
ANISOTROPY DIFFRACTION ELLIPTIC DISPERSION EQUATION GRATING HYPERBOLIC DISPERSION EQUATION NEGATIVE REFRACTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented and compared with those obtained by means of the Rayleigh method, showing that both the differential method and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted Floquet harmonics. Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos. Imperial College London; Reino Unido |
description |
The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented and compared with those obtained by means of the Rayleigh method, showing that both the differential method and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted Floquet harmonics. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/71111 Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case; Elsevier Science; Optics Communications; 258; 2; 2-2006; 90-96 0030-4018 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/71111 |
identifier_str_mv |
Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case; Elsevier Science; Optics Communications; 258; 2; 2-2006; 90-96 0030-4018 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0030401805007789 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.optcom.2005.07.067 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613507782279168 |
score |
13.070432 |