Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
- Autores
- Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America.
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lakhtakia, Akhlesh. Imperial College London; Reino Unido - Materia
-
Anisotropic Grating
Negative Refraction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/71620
Ver los metadatos del registro completo
id |
CONICETDig_13cc210c0721df0990599a63cd95090b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/71620 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refractionDepine, Ricardo AngelInchaussandague, Marina ElizabethLakhtakia, AkhleshAnisotropic GratingNegative Refractionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America.Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lakhtakia, Akhlesh. Imperial College London; Reino UnidoOptical Society of America2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71620Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 23; 3; 12-2006; 514-5280740-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.23.000514info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:35Zoai:ri.conicet.gov.ar:11336/71620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:36.141CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
title |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
spellingShingle |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction Depine, Ricardo Angel Anisotropic Grating Negative Refraction |
title_short |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
title_full |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
title_fullStr |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
title_full_unstemmed |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
title_sort |
Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction |
dc.creator.none.fl_str_mv |
Depine, Ricardo Angel Inchaussandague, Marina Elizabeth Lakhtakia, Akhlesh |
author |
Depine, Ricardo Angel |
author_facet |
Depine, Ricardo Angel Inchaussandague, Marina Elizabeth Lakhtakia, Akhlesh |
author_role |
author |
author2 |
Inchaussandague, Marina Elizabeth Lakhtakia, Akhlesh |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Anisotropic Grating Negative Refraction |
topic |
Anisotropic Grating Negative Refraction |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America. Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Lakhtakia, Akhlesh. Imperial College London; Reino Unido |
description |
Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/71620 Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 23; 3; 12-2006; 514-528 0740-3224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/71620 |
identifier_str_mv |
Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 23; 3; 12-2006; 514-528 0740-3224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.23.000514 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Optical Society of America |
publisher.none.fl_str_mv |
Optical Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613109996584960 |
score |
13.070432 |