Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction

Autores
Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America.
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lakhtakia, Akhlesh. Imperial College London; Reino Unido
Materia
Anisotropic Grating
Negative Refraction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/71620

id CONICETDig_13cc210c0721df0990599a63cd95090b
oai_identifier_str oai:ri.conicet.gov.ar:11336/71620
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refractionDepine, Ricardo AngelInchaussandague, Marina ElizabethLakhtakia, AkhleshAnisotropic GratingNegative Refractionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America.Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lakhtakia, Akhlesh. Imperial College London; Reino UnidoOptical Society of America2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71620Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 23; 3; 12-2006; 514-5280740-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.23.000514info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:35Zoai:ri.conicet.gov.ar:11336/71620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:36.141CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
title Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
spellingShingle Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
Depine, Ricardo Angel
Anisotropic Grating
Negative Refraction
title_short Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
title_full Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
title_fullStr Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
title_full_unstemmed Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
title_sort Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction
dc.creator.none.fl_str_mv Depine, Ricardo Angel
Inchaussandague, Marina Elizabeth
Lakhtakia, Akhlesh
author Depine, Ricardo Angel
author_facet Depine, Ricardo Angel
Inchaussandague, Marina Elizabeth
Lakhtakia, Akhlesh
author_role author
author2 Inchaussandague, Marina Elizabeth
Lakhtakia, Akhlesh
author2_role author
author
dc.subject.none.fl_str_mv Anisotropic Grating
Negative Refraction
topic Anisotropic Grating
Negative Refraction
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America.
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Inchaussandague, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lakhtakia, Akhlesh. Imperial College London; Reino Unido
description Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, nondissipative, uniaxial dielectric-magnetic material is formulated as a boundary-value problem and solved using the differential method. Attention is paid to two classes of diffracting materials: those with negative definite permittivity and permeability tensors and those with indefinite permittivity and permeability tensors. The dispersion equations turn out to be elliptic for the first class of diffracting materials, whereas for the second class they can be hyperbolic, elliptic, or linear, depending on the orientation of the optic axis. When the dispersion equations are elliptic, the optical response of the grating is qualitatively similar to that for conventional gratings: a finite number of refraction channels are supported. On the other hand, hyperbolic or linear dispersion equations imply the possibility of an infinite number of refraction channels. This possibility seriously incapacitates the differential method as the corrugations deepen. © 2006 Optical Society of America.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/71620
Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 23; 3; 12-2006; 514-528
0740-3224
CONICET Digital
CONICET
url http://hdl.handle.net/11336/71620
identifier_str_mv Depine, Ricardo Angel; Inchaussandague, Marina Elizabeth; Lakhtakia, Akhlesh; Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 23; 3; 12-2006; 514-528
0740-3224
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.23.000514
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optical Society of America
publisher.none.fl_str_mv Optical Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613109996584960
score 13.070432