Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach

Autores
Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.
Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; Alemania
Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Materia
ADSORPTION
KONDO EFFECT
GRAPHENE
ANDERSON IMPURITY MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111218

id CONICETDig_71b50bd7a91422a6bafcf4caa75872e2
oai_identifier_str oai:ri.conicet.gov.ar:11336/111218
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approachTacca, Marcos SebastianJacob, T.Goldberg, Edith CatalinaADSORPTIONKONDO EFFECTGRAPHENEANDERSON IMPURITY MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; AlemaniaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaAmerican Physical Society2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111218Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina; Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 101; 12; 3-2020; 1-171098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.101.125419info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.101.125419info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:55Zoai:ri.conicet.gov.ar:11336/111218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:56.155CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
title Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
spellingShingle Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
Tacca, Marcos Sebastian
ADSORPTION
KONDO EFFECT
GRAPHENE
ANDERSON IMPURITY MODEL
title_short Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
title_full Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
title_fullStr Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
title_full_unstemmed Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
title_sort Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
dc.creator.none.fl_str_mv Tacca, Marcos Sebastian
Jacob, T.
Goldberg, Edith Catalina
author Tacca, Marcos Sebastian
author_facet Tacca, Marcos Sebastian
Jacob, T.
Goldberg, Edith Catalina
author_role author
author2 Jacob, T.
Goldberg, Edith Catalina
author2_role author
author
dc.subject.none.fl_str_mv ADSORPTION
KONDO EFFECT
GRAPHENE
ANDERSON IMPURITY MODEL
topic ADSORPTION
KONDO EFFECT
GRAPHENE
ANDERSON IMPURITY MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.
Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; Alemania
Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
description In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111218
Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina; Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 101; 12; 3-2020; 1-17
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111218
identifier_str_mv Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina; Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 101; 12; 3-2020; 1-17
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.101.125419
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.101.125419
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614389730115584
score 13.070432