Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach
- Autores
- Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.
Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; Alemania
Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina - Materia
-
ADSORPTION
KONDO EFFECT
GRAPHENE
ANDERSON IMPURITY MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111218
Ver los metadatos del registro completo
id |
CONICETDig_71b50bd7a91422a6bafcf4caa75872e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111218 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approachTacca, Marcos SebastianJacob, T.Goldberg, Edith CatalinaADSORPTIONKONDO EFFECTGRAPHENEANDERSON IMPURITY MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; AlemaniaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaAmerican Physical Society2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111218Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina; Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 101; 12; 3-2020; 1-171098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.101.125419info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.101.125419info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:55Zoai:ri.conicet.gov.ar:11336/111218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:56.155CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
title |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
spellingShingle |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach Tacca, Marcos Sebastian ADSORPTION KONDO EFFECT GRAPHENE ANDERSON IMPURITY MODEL |
title_short |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
title_full |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
title_fullStr |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
title_full_unstemmed |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
title_sort |
Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach |
dc.creator.none.fl_str_mv |
Tacca, Marcos Sebastian Jacob, T. Goldberg, Edith Catalina |
author |
Tacca, Marcos Sebastian |
author_facet |
Tacca, Marcos Sebastian Jacob, T. Goldberg, Edith Catalina |
author_role |
author |
author2 |
Jacob, T. Goldberg, Edith Catalina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ADSORPTION KONDO EFFECT GRAPHENE ANDERSON IMPURITY MODEL |
topic |
ADSORPTION KONDO EFFECT GRAPHENE ANDERSON IMPURITY MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability. Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina Fil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; Alemania Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina |
description |
In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111218 Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina; Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 101; 12; 3-2020; 1-17 1098-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111218 |
identifier_str_mv |
Tacca, Marcos Sebastian; Jacob, T.; Goldberg, Edith Catalina; Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 101; 12; 3-2020; 1-17 1098-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.101.125419 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.101.125419 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614389730115584 |
score |
13.070432 |