Sequential optimality conditions for optimization problems with additional abstract set constraints

Autores
Schuverdt, María Laura; Sánchez, María Daniela; Fazzio, Nadia Soledad
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, the so-called positive approximate Karush-Kuhn-Tucker sequential condition and the strict constraint qualification associated with thiscondition for general scalar problems with equality and inequality constraintswere introduced. In this work, we extend them to optimization problems with an additional abstract set constraints. We also present an extension of the approximate Karush-Kuhn-Tucker sequential condition and its related strict constraint qualification. Furthermore, we explore the relations between the newconstraint qualifications and other constraint qualifications known in the literature as Abadie, quasi-normality and the approximate Karush-Kuhn-Tucker regularity constraint qualification. And finally, we introduce an AugmentedLagrangian Method for solving the optimization problem with abstract setconstraint and we show that it is possible to obtain global convergence underthe new condition.
Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Sánchez, María Daniela. Universidad Nacional de La Plata; Argentina
Fil: Fazzio, Nadia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
Materia
SEQUENTIAL CONDITION
CONSTRAINT QUALIFICATION
OPTIMIZATION PROBLEM
ABSTRACT SET
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/217586

id CONICETDig_713dc703a4b84f2da5eea6974cfad8c2
oai_identifier_str oai:ri.conicet.gov.ar:11336/217586
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sequential optimality conditions for optimization problems with additional abstract set constraintsSchuverdt, María LauraSánchez, María DanielaFazzio, Nadia SoledadSEQUENTIAL CONDITIONCONSTRAINT QUALIFICATIONOPTIMIZATION PROBLEMABSTRACT SEThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, the so-called positive approximate Karush-Kuhn-Tucker sequential condition and the strict constraint qualification associated with thiscondition for general scalar problems with equality and inequality constraintswere introduced. In this work, we extend them to optimization problems with an additional abstract set constraints. We also present an extension of the approximate Karush-Kuhn-Tucker sequential condition and its related strict constraint qualification. Furthermore, we explore the relations between the newconstraint qualifications and other constraint qualifications known in the literature as Abadie, quasi-normality and the approximate Karush-Kuhn-Tucker regularity constraint qualification. And finally, we introduce an AugmentedLagrangian Method for solving the optimization problem with abstract setconstraint and we show that it is possible to obtain global convergence underthe new condition.Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Sánchez, María Daniela. Universidad Nacional de La Plata; ArgentinaFil: Fazzio, Nadia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; ArgentinaUnión Matemática Argentina2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217586Schuverdt, María Laura; Sánchez, María Daniela; Fazzio, Nadia Soledad; Sequential optimality conditions for optimization problems with additional abstract set constraints; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 9-2022; 1-230041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.2260info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=inpressinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:13Zoai:ri.conicet.gov.ar:11336/217586instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:14.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sequential optimality conditions for optimization problems with additional abstract set constraints
title Sequential optimality conditions for optimization problems with additional abstract set constraints
spellingShingle Sequential optimality conditions for optimization problems with additional abstract set constraints
Schuverdt, María Laura
SEQUENTIAL CONDITION
CONSTRAINT QUALIFICATION
OPTIMIZATION PROBLEM
ABSTRACT SET
title_short Sequential optimality conditions for optimization problems with additional abstract set constraints
title_full Sequential optimality conditions for optimization problems with additional abstract set constraints
title_fullStr Sequential optimality conditions for optimization problems with additional abstract set constraints
title_full_unstemmed Sequential optimality conditions for optimization problems with additional abstract set constraints
title_sort Sequential optimality conditions for optimization problems with additional abstract set constraints
dc.creator.none.fl_str_mv Schuverdt, María Laura
Sánchez, María Daniela
Fazzio, Nadia Soledad
author Schuverdt, María Laura
author_facet Schuverdt, María Laura
Sánchez, María Daniela
Fazzio, Nadia Soledad
author_role author
author2 Sánchez, María Daniela
Fazzio, Nadia Soledad
author2_role author
author
dc.subject.none.fl_str_mv SEQUENTIAL CONDITION
CONSTRAINT QUALIFICATION
OPTIMIZATION PROBLEM
ABSTRACT SET
topic SEQUENTIAL CONDITION
CONSTRAINT QUALIFICATION
OPTIMIZATION PROBLEM
ABSTRACT SET
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, the so-called positive approximate Karush-Kuhn-Tucker sequential condition and the strict constraint qualification associated with thiscondition for general scalar problems with equality and inequality constraintswere introduced. In this work, we extend them to optimization problems with an additional abstract set constraints. We also present an extension of the approximate Karush-Kuhn-Tucker sequential condition and its related strict constraint qualification. Furthermore, we explore the relations between the newconstraint qualifications and other constraint qualifications known in the literature as Abadie, quasi-normality and the approximate Karush-Kuhn-Tucker regularity constraint qualification. And finally, we introduce an AugmentedLagrangian Method for solving the optimization problem with abstract setconstraint and we show that it is possible to obtain global convergence underthe new condition.
Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Sánchez, María Daniela. Universidad Nacional de La Plata; Argentina
Fil: Fazzio, Nadia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
description Recently, the so-called positive approximate Karush-Kuhn-Tucker sequential condition and the strict constraint qualification associated with thiscondition for general scalar problems with equality and inequality constraintswere introduced. In this work, we extend them to optimization problems with an additional abstract set constraints. We also present an extension of the approximate Karush-Kuhn-Tucker sequential condition and its related strict constraint qualification. Furthermore, we explore the relations between the newconstraint qualifications and other constraint qualifications known in the literature as Abadie, quasi-normality and the approximate Karush-Kuhn-Tucker regularity constraint qualification. And finally, we introduce an AugmentedLagrangian Method for solving the optimization problem with abstract setconstraint and we show that it is possible to obtain global convergence underthe new condition.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/217586
Schuverdt, María Laura; Sánchez, María Daniela; Fazzio, Nadia Soledad; Sequential optimality conditions for optimization problems with additional abstract set constraints; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 9-2022; 1-23
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/217586
identifier_str_mv Schuverdt, María Laura; Sánchez, María Daniela; Fazzio, Nadia Soledad; Sequential optimality conditions for optimization problems with additional abstract set constraints; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 9-2022; 1-23
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.2260
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=inpress
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083431785562112
score 13.22299