Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations

Autores
Gavilán Arriazu, Edgardo Maximiliano; Ruderman, Andres; Bederian, Carlos Sergio; Moran Vieyra, Faustino Eduardo; Leiva, Ezequiel Pedro M.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.
Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Ruderman, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Bederian, Carlos Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Moran Vieyra, Faustino Eduardo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
KMC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/276604

id CONICETDig_70b75ae30e067c0b0753c4854bec2fdf
oai_identifier_str oai:ri.conicet.gov.ar:11336/276604
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic SimulationsGavilán Arriazu, Edgardo MaximilianoRuderman, AndresBederian, Carlos SergioMoran Vieyra, Faustino EduardoLeiva, Ezequiel Pedro M.KMChttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Ruderman, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bederian, Carlos Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Moran Vieyra, Faustino Eduardo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaMolecular Diversity Preservation International2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276604Gavilán Arriazu, Edgardo Maximiliano; Ruderman, Andres; Bederian, Carlos Sergio; Moran Vieyra, Faustino Eduardo; Leiva, Ezequiel Pedro M.; Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations; Molecular Diversity Preservation International; Entropy; 27; 7; 6-2025; 1-231099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/7/663info:eu-repo/semantics/altIdentifier/doi/10.3390/e27070663info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:11:46Zoai:ri.conicet.gov.ar:11336/276604instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:11:46.592CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
title Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
spellingShingle Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
Gavilán Arriazu, Edgardo Maximiliano
KMC
title_short Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
title_full Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
title_fullStr Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
title_full_unstemmed Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
title_sort Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
dc.creator.none.fl_str_mv Gavilán Arriazu, Edgardo Maximiliano
Ruderman, Andres
Bederian, Carlos Sergio
Moran Vieyra, Faustino Eduardo
Leiva, Ezequiel Pedro M.
author Gavilán Arriazu, Edgardo Maximiliano
author_facet Gavilán Arriazu, Edgardo Maximiliano
Ruderman, Andres
Bederian, Carlos Sergio
Moran Vieyra, Faustino Eduardo
Leiva, Ezequiel Pedro M.
author_role author
author2 Ruderman, Andres
Bederian, Carlos Sergio
Moran Vieyra, Faustino Eduardo
Leiva, Ezequiel Pedro M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv KMC
topic KMC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.
Fil: Gavilán Arriazu, Edgardo Maximiliano. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Ruderman, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Bederian, Carlos Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Moran Vieyra, Faustino Eduardo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.
publishDate 2025
dc.date.none.fl_str_mv 2025-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/276604
Gavilán Arriazu, Edgardo Maximiliano; Ruderman, Andres; Bederian, Carlos Sergio; Moran Vieyra, Faustino Eduardo; Leiva, Ezequiel Pedro M.; Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations; Molecular Diversity Preservation International; Entropy; 27; 7; 6-2025; 1-23
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/276604
identifier_str_mv Gavilán Arriazu, Edgardo Maximiliano; Ruderman, Andres; Bederian, Carlos Sergio; Moran Vieyra, Faustino Eduardo; Leiva, Ezequiel Pedro M.; Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations; Molecular Diversity Preservation International; Entropy; 27; 7; 6-2025; 1-23
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/7/663
info:eu-repo/semantics/altIdentifier/doi/10.3390/e27070663
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852334894809612288
score 12.952241