Seed science in the 21st century: its role in emerging economies
- Autores
- Benech Arnold, Roberto; Semmartin, María Gisela; Oesterheld, Martin
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Emerging economies (Brazil, Russia, India, China and other countries) are expected to play a major role in the global economy during the 21st century. Some of these countries have exceptional soil and climate characteristics that determine evident advantages for food production. These features, combined with a rapid adoption of technologies generated by industrialized economies (i.e. transgenic crops and others), have been instrumental to fast expansion of agricultural production in recent years. For such reasons, some of these economies are strongly based on production of food commodities (agriculture represents 18.3, 12.6, 9.4 and 8.1% of the gross domestic product of India, China, Argentina and Brazil, respectively) and have a great share in global food production. Despite the mentioned characteristics that make agricultural activity so efficient in these countries, generation of new technologies in order to guarantee the systems’ sustainability and add value to agricultural production (by means of, for example, royalties or technologies generated with local criteria) relies on research carried out in areas such as crop science, biotechnology, ecology, plant breeding and, of course, seed science. However, the amount of local research carried out in these countries appears not to be in agreement with the importance that agricultural production has in their economies. For example, Argentina produces 16.20% of the soybean produced in the world but only 2% of the scientific literature related to this crop in its many aspects. This imbalance between the weight that agricultural production has on these economies and generation of knowledge in the related disciplines, threatens the sustainability of these economic models and, therefore, of global food production. Seed science, then, is called on to play a major role in these emerging economies, through the different approaches (i.e. ecological, physiological, agronomical and molecular) that the discipline has to offer. Here we provide four examples in which seed science (through any of the four approaches mentioned above): (1) has identified subtle but crucial components of newly adopted production systems; (2) has proposed means for their adjustment in order to secure the sustainability of those systems; and (3) might help to add value to agricultural production through the development of new germplasm displaying specific features (e.g. timing of dormancy release adjusted to industrial necessities).
Fil: Benech Arnold, Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Semmartin, María Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina - Materia
-
Emerging Economies
Food Production
Seed Science - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16899
Ver los metadatos del registro completo
id |
CONICETDig_6fd88ffb2643df20c05cf4569b9e797c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16899 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Seed science in the 21st century: its role in emerging economiesBenech Arnold, RobertoSemmartin, María GiselaOesterheld, MartinEmerging EconomiesFood ProductionSeed Sciencehttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Emerging economies (Brazil, Russia, India, China and other countries) are expected to play a major role in the global economy during the 21st century. Some of these countries have exceptional soil and climate characteristics that determine evident advantages for food production. These features, combined with a rapid adoption of technologies generated by industrialized economies (i.e. transgenic crops and others), have been instrumental to fast expansion of agricultural production in recent years. For such reasons, some of these economies are strongly based on production of food commodities (agriculture represents 18.3, 12.6, 9.4 and 8.1% of the gross domestic product of India, China, Argentina and Brazil, respectively) and have a great share in global food production. Despite the mentioned characteristics that make agricultural activity so efficient in these countries, generation of new technologies in order to guarantee the systems’ sustainability and add value to agricultural production (by means of, for example, royalties or technologies generated with local criteria) relies on research carried out in areas such as crop science, biotechnology, ecology, plant breeding and, of course, seed science. However, the amount of local research carried out in these countries appears not to be in agreement with the importance that agricultural production has in their economies. For example, Argentina produces 16.20% of the soybean produced in the world but only 2% of the scientific literature related to this crop in its many aspects. This imbalance between the weight that agricultural production has on these economies and generation of knowledge in the related disciplines, threatens the sustainability of these economic models and, therefore, of global food production. Seed science, then, is called on to play a major role in these emerging economies, through the different approaches (i.e. ecological, physiological, agronomical and molecular) that the discipline has to offer. Here we provide four examples in which seed science (through any of the four approaches mentioned above): (1) has identified subtle but crucial components of newly adopted production systems; (2) has proposed means for their adjustment in order to secure the sustainability of those systems; and (3) might help to add value to agricultural production through the development of new germplasm displaying specific features (e.g. timing of dormancy release adjusted to industrial necessities).Fil: Benech Arnold, Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Semmartin, María Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaCambridge University Press2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16899Benech Arnold, Roberto; Semmartin, María Gisela; Oesterheld, Martin; Seed science in the 21st century: its role in emerging economies; Cambridge University Press; Seed Science Research; 22; S1; 2-2012; S3-S80960-2585enginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0960258511000420info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/seed-science-research/article/seed-science-in-the-21st-century-its-role-in-emerging-economies/84AB69ABE08CBD862AAF8606C7B3BCF9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:51Zoai:ri.conicet.gov.ar:11336/16899instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:52.249CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Seed science in the 21st century: its role in emerging economies |
title |
Seed science in the 21st century: its role in emerging economies |
spellingShingle |
Seed science in the 21st century: its role in emerging economies Benech Arnold, Roberto Emerging Economies Food Production Seed Science |
title_short |
Seed science in the 21st century: its role in emerging economies |
title_full |
Seed science in the 21st century: its role in emerging economies |
title_fullStr |
Seed science in the 21st century: its role in emerging economies |
title_full_unstemmed |
Seed science in the 21st century: its role in emerging economies |
title_sort |
Seed science in the 21st century: its role in emerging economies |
dc.creator.none.fl_str_mv |
Benech Arnold, Roberto Semmartin, María Gisela Oesterheld, Martin |
author |
Benech Arnold, Roberto |
author_facet |
Benech Arnold, Roberto Semmartin, María Gisela Oesterheld, Martin |
author_role |
author |
author2 |
Semmartin, María Gisela Oesterheld, Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Emerging Economies Food Production Seed Science |
topic |
Emerging Economies Food Production Seed Science |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Emerging economies (Brazil, Russia, India, China and other countries) are expected to play a major role in the global economy during the 21st century. Some of these countries have exceptional soil and climate characteristics that determine evident advantages for food production. These features, combined with a rapid adoption of technologies generated by industrialized economies (i.e. transgenic crops and others), have been instrumental to fast expansion of agricultural production in recent years. For such reasons, some of these economies are strongly based on production of food commodities (agriculture represents 18.3, 12.6, 9.4 and 8.1% of the gross domestic product of India, China, Argentina and Brazil, respectively) and have a great share in global food production. Despite the mentioned characteristics that make agricultural activity so efficient in these countries, generation of new technologies in order to guarantee the systems’ sustainability and add value to agricultural production (by means of, for example, royalties or technologies generated with local criteria) relies on research carried out in areas such as crop science, biotechnology, ecology, plant breeding and, of course, seed science. However, the amount of local research carried out in these countries appears not to be in agreement with the importance that agricultural production has in their economies. For example, Argentina produces 16.20% of the soybean produced in the world but only 2% of the scientific literature related to this crop in its many aspects. This imbalance between the weight that agricultural production has on these economies and generation of knowledge in the related disciplines, threatens the sustainability of these economic models and, therefore, of global food production. Seed science, then, is called on to play a major role in these emerging economies, through the different approaches (i.e. ecological, physiological, agronomical and molecular) that the discipline has to offer. Here we provide four examples in which seed science (through any of the four approaches mentioned above): (1) has identified subtle but crucial components of newly adopted production systems; (2) has proposed means for their adjustment in order to secure the sustainability of those systems; and (3) might help to add value to agricultural production through the development of new germplasm displaying specific features (e.g. timing of dormancy release adjusted to industrial necessities). Fil: Benech Arnold, Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Semmartin, María Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina |
description |
Emerging economies (Brazil, Russia, India, China and other countries) are expected to play a major role in the global economy during the 21st century. Some of these countries have exceptional soil and climate characteristics that determine evident advantages for food production. These features, combined with a rapid adoption of technologies generated by industrialized economies (i.e. transgenic crops and others), have been instrumental to fast expansion of agricultural production in recent years. For such reasons, some of these economies are strongly based on production of food commodities (agriculture represents 18.3, 12.6, 9.4 and 8.1% of the gross domestic product of India, China, Argentina and Brazil, respectively) and have a great share in global food production. Despite the mentioned characteristics that make agricultural activity so efficient in these countries, generation of new technologies in order to guarantee the systems’ sustainability and add value to agricultural production (by means of, for example, royalties or technologies generated with local criteria) relies on research carried out in areas such as crop science, biotechnology, ecology, plant breeding and, of course, seed science. However, the amount of local research carried out in these countries appears not to be in agreement with the importance that agricultural production has in their economies. For example, Argentina produces 16.20% of the soybean produced in the world but only 2% of the scientific literature related to this crop in its many aspects. This imbalance between the weight that agricultural production has on these economies and generation of knowledge in the related disciplines, threatens the sustainability of these economic models and, therefore, of global food production. Seed science, then, is called on to play a major role in these emerging economies, through the different approaches (i.e. ecological, physiological, agronomical and molecular) that the discipline has to offer. Here we provide four examples in which seed science (through any of the four approaches mentioned above): (1) has identified subtle but crucial components of newly adopted production systems; (2) has proposed means for their adjustment in order to secure the sustainability of those systems; and (3) might help to add value to agricultural production through the development of new germplasm displaying specific features (e.g. timing of dormancy release adjusted to industrial necessities). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16899 Benech Arnold, Roberto; Semmartin, María Gisela; Oesterheld, Martin; Seed science in the 21st century: its role in emerging economies; Cambridge University Press; Seed Science Research; 22; S1; 2-2012; S3-S8 0960-2585 |
url |
http://hdl.handle.net/11336/16899 |
identifier_str_mv |
Benech Arnold, Roberto; Semmartin, María Gisela; Oesterheld, Martin; Seed science in the 21st century: its role in emerging economies; Cambridge University Press; Seed Science Research; 22; S1; 2-2012; S3-S8 0960-2585 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0960258511000420 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/seed-science-research/article/seed-science-in-the-21st-century-its-role-in-emerging-economies/84AB69ABE08CBD862AAF8606C7B3BCF9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269187318218752 |
score |
13.13397 |