Examples of reflection positive field theories

Autores
Trinchero, Roberto Carlos
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories.
Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Materia
NON-INTEGER DIMENSIONAL SPACE
NON-LOCAL FIELD THEORIES
REFLECTION POSITIVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70707

id CONICETDig_6fc08f4ec1dfee6e575836320bc67e42
oai_identifier_str oai:ri.conicet.gov.ar:11336/70707
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Examples of reflection positive field theoriesTrinchero, Roberto CarlosNON-INTEGER DIMENSIONAL SPACENON-LOCAL FIELD THEORIESREFLECTION POSITIVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories.Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaWorld Scientific2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70707Trinchero, Roberto Carlos; Examples of reflection positive field theories; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 2; 2-2018; 1-160219-8878CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219887818500226info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219887818500226info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07735info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:13Zoai:ri.conicet.gov.ar:11336/70707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:13.34CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Examples of reflection positive field theories
title Examples of reflection positive field theories
spellingShingle Examples of reflection positive field theories
Trinchero, Roberto Carlos
NON-INTEGER DIMENSIONAL SPACE
NON-LOCAL FIELD THEORIES
REFLECTION POSITIVITY
title_short Examples of reflection positive field theories
title_full Examples of reflection positive field theories
title_fullStr Examples of reflection positive field theories
title_full_unstemmed Examples of reflection positive field theories
title_sort Examples of reflection positive field theories
dc.creator.none.fl_str_mv Trinchero, Roberto Carlos
author Trinchero, Roberto Carlos
author_facet Trinchero, Roberto Carlos
author_role author
dc.subject.none.fl_str_mv NON-INTEGER DIMENSIONAL SPACE
NON-LOCAL FIELD THEORIES
REFLECTION POSITIVITY
topic NON-INTEGER DIMENSIONAL SPACE
NON-LOCAL FIELD THEORIES
REFLECTION POSITIVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories.
Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
description The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70707
Trinchero, Roberto Carlos; Examples of reflection positive field theories; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 2; 2-2018; 1-16
0219-8878
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70707
identifier_str_mv Trinchero, Roberto Carlos; Examples of reflection positive field theories; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 2; 2-2018; 1-16
0219-8878
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219887818500226
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219887818500226
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07735
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613272495456256
score 13.070432