Examples of reflection positive field theories
- Autores
- Trinchero, Roberto Carlos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories.
Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina - Materia
-
NON-INTEGER DIMENSIONAL SPACE
NON-LOCAL FIELD THEORIES
REFLECTION POSITIVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70707
Ver los metadatos del registro completo
id |
CONICETDig_6fc08f4ec1dfee6e575836320bc67e42 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70707 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Examples of reflection positive field theoriesTrinchero, Roberto CarlosNON-INTEGER DIMENSIONAL SPACENON-LOCAL FIELD THEORIESREFLECTION POSITIVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories.Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaWorld Scientific2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70707Trinchero, Roberto Carlos; Examples of reflection positive field theories; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 2; 2-2018; 1-160219-8878CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219887818500226info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219887818500226info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07735info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:13Zoai:ri.conicet.gov.ar:11336/70707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:13.34CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Examples of reflection positive field theories |
title |
Examples of reflection positive field theories |
spellingShingle |
Examples of reflection positive field theories Trinchero, Roberto Carlos NON-INTEGER DIMENSIONAL SPACE NON-LOCAL FIELD THEORIES REFLECTION POSITIVITY |
title_short |
Examples of reflection positive field theories |
title_full |
Examples of reflection positive field theories |
title_fullStr |
Examples of reflection positive field theories |
title_full_unstemmed |
Examples of reflection positive field theories |
title_sort |
Examples of reflection positive field theories |
dc.creator.none.fl_str_mv |
Trinchero, Roberto Carlos |
author |
Trinchero, Roberto Carlos |
author_facet |
Trinchero, Roberto Carlos |
author_role |
author |
dc.subject.none.fl_str_mv |
NON-INTEGER DIMENSIONAL SPACE NON-LOCAL FIELD THEORIES REFLECTION POSITIVITY |
topic |
NON-INTEGER DIMENSIONAL SPACE NON-LOCAL FIELD THEORIES REFLECTION POSITIVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories. Fil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina |
description |
The requirement of reflection positivity (RP) for Euclidean field theories is considered. This is done for the cases of a scalar field, a higher derivative scalar field theory and the scalar field theory defined on a non-integer dimensional space (NIDS). It is shown that regarding RP, the analytical structure of the corresponding Schwinger functions plays an important role. For the higher derivative scalar field theory, RP does not hold. However for the scalar field theory on a NIDS, RP holds in a certain range of dimensions where the corresponding Minkowskian field is defined on a Hilbert space with a positive definite scalar product that provides a unitary representation of the Poincaré group. In addition, and motivated by the last example, it is shown that, under certain conditions, one can construct non-local reflection positive Euclidean field theories starting from the corrected two point functions of interacting local field theories. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70707 Trinchero, Roberto Carlos; Examples of reflection positive field theories; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 2; 2-2018; 1-16 0219-8878 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70707 |
identifier_str_mv |
Trinchero, Roberto Carlos; Examples of reflection positive field theories; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 2; 2-2018; 1-16 0219-8878 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219887818500226 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219887818500226 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07735 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613272495456256 |
score |
13.070432 |