Stellar scattering and the formation of hot Jupiters in binary systems

Autores
Marti, Javier Guillermo; Beauge, Cristian
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P⩽10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator, leading to ~20% of HJs in retrograde orbits. More than half, however, seem consistent with near-circular and planar orbits. In recent years, two mechanisms have been proposed to explain the excited and misaligned subpopulation of HJs: Lidov–Kozai migration and planet–planet scattering. Although both are based on completely different dynamical phenomena, at first hand they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms, especially with respect to the final distribution of orbital characteristics. In this paper, we present a series of numerical simulations of Lidov–Kozai trapping of single planets in compact binary systems that suffered a close fly-by of a background star. Both the planet and the binary component are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. We also include tidal effects, stellar oblateness and post-Newtonian perturbations. The present work aims at the comparison of the two mechanisms (Lidov–Kozai and planet–planet scattering) as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beaugé & Nesvorný (2012), where the authors analyse how the planet–planet scattering mechanisms works in order to form this hot Jovian-size planets. We find that several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism (planet–planet scattering or Lidov–Kozai migration). These include both the 3-day pile-up and the distribution in the eccentricity versus semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov–Kozai trapping favours a more random distribution (or even a preference for near polar orbits), planet–planet scattering shows a large portion of bodies nearly aligned with the equator of the central star. This is more consistent with the distribution of known hot planets, perhaps indicating that scattering may be a more efficient mechanism for producing these bodies.
Fil: Marti, Javier Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Materia
Planets
Formation
Hot-Jupiters
Scattering
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32263

id CONICETDig_6fb8f8b6e24829e2c44776c2d3c36015
oai_identifier_str oai:ri.conicet.gov.ar:11336/32263
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stellar scattering and the formation of hot Jupiters in binary systemsMarti, Javier GuillermoBeauge, CristianPlanetsFormationHot-JupitersScatteringhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P⩽10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator, leading to ~20% of HJs in retrograde orbits. More than half, however, seem consistent with near-circular and planar orbits. In recent years, two mechanisms have been proposed to explain the excited and misaligned subpopulation of HJs: Lidov–Kozai migration and planet–planet scattering. Although both are based on completely different dynamical phenomena, at first hand they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms, especially with respect to the final distribution of orbital characteristics. In this paper, we present a series of numerical simulations of Lidov–Kozai trapping of single planets in compact binary systems that suffered a close fly-by of a background star. Both the planet and the binary component are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. We also include tidal effects, stellar oblateness and post-Newtonian perturbations. The present work aims at the comparison of the two mechanisms (Lidov–Kozai and planet–planet scattering) as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beaugé & Nesvorný (2012), where the authors analyse how the planet–planet scattering mechanisms works in order to form this hot Jovian-size planets. We find that several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism (planet–planet scattering or Lidov–Kozai migration). These include both the 3-day pile-up and the distribution in the eccentricity versus semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov–Kozai trapping favours a more random distribution (or even a preference for near polar orbits), planet–planet scattering shows a large portion of bodies nearly aligned with the equator of the central star. This is more consistent with the distribution of known hot planets, perhaps indicating that scattering may be a more efficient mechanism for producing these bodies.Fil: Marti, Javier Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaCambridge University Press2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32263Beauge, Cristian; Marti, Javier Guillermo; Stellar scattering and the formation of hot Jupiters in binary systems; Cambridge University Press; International Journal Of Astrobiology; 14; 2; 4-2014; 313-3201473-5504CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S147355041400007Xinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/stellar-scattering-and-the-formation-of-hot-jupiters-in-binary-systems/4A5F9D0347D20642EDEBF29766888DA5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:19Zoai:ri.conicet.gov.ar:11336/32263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:19.771CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stellar scattering and the formation of hot Jupiters in binary systems
title Stellar scattering and the formation of hot Jupiters in binary systems
spellingShingle Stellar scattering and the formation of hot Jupiters in binary systems
Marti, Javier Guillermo
Planets
Formation
Hot-Jupiters
Scattering
title_short Stellar scattering and the formation of hot Jupiters in binary systems
title_full Stellar scattering and the formation of hot Jupiters in binary systems
title_fullStr Stellar scattering and the formation of hot Jupiters in binary systems
title_full_unstemmed Stellar scattering and the formation of hot Jupiters in binary systems
title_sort Stellar scattering and the formation of hot Jupiters in binary systems
dc.creator.none.fl_str_mv Marti, Javier Guillermo
Beauge, Cristian
author Marti, Javier Guillermo
author_facet Marti, Javier Guillermo
Beauge, Cristian
author_role author
author2 Beauge, Cristian
author2_role author
dc.subject.none.fl_str_mv Planets
Formation
Hot-Jupiters
Scattering
topic Planets
Formation
Hot-Jupiters
Scattering
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P⩽10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator, leading to ~20% of HJs in retrograde orbits. More than half, however, seem consistent with near-circular and planar orbits. In recent years, two mechanisms have been proposed to explain the excited and misaligned subpopulation of HJs: Lidov–Kozai migration and planet–planet scattering. Although both are based on completely different dynamical phenomena, at first hand they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms, especially with respect to the final distribution of orbital characteristics. In this paper, we present a series of numerical simulations of Lidov–Kozai trapping of single planets in compact binary systems that suffered a close fly-by of a background star. Both the planet and the binary component are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. We also include tidal effects, stellar oblateness and post-Newtonian perturbations. The present work aims at the comparison of the two mechanisms (Lidov–Kozai and planet–planet scattering) as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beaugé & Nesvorný (2012), where the authors analyse how the planet–planet scattering mechanisms works in order to form this hot Jovian-size planets. We find that several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism (planet–planet scattering or Lidov–Kozai migration). These include both the 3-day pile-up and the distribution in the eccentricity versus semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov–Kozai trapping favours a more random distribution (or even a preference for near polar orbits), planet–planet scattering shows a large portion of bodies nearly aligned with the equator of the central star. This is more consistent with the distribution of known hot planets, perhaps indicating that scattering may be a more efficient mechanism for producing these bodies.
Fil: Marti, Javier Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
description Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P⩽10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator, leading to ~20% of HJs in retrograde orbits. More than half, however, seem consistent with near-circular and planar orbits. In recent years, two mechanisms have been proposed to explain the excited and misaligned subpopulation of HJs: Lidov–Kozai migration and planet–planet scattering. Although both are based on completely different dynamical phenomena, at first hand they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms, especially with respect to the final distribution of orbital characteristics. In this paper, we present a series of numerical simulations of Lidov–Kozai trapping of single planets in compact binary systems that suffered a close fly-by of a background star. Both the planet and the binary component are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. We also include tidal effects, stellar oblateness and post-Newtonian perturbations. The present work aims at the comparison of the two mechanisms (Lidov–Kozai and planet–planet scattering) as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beaugé & Nesvorný (2012), where the authors analyse how the planet–planet scattering mechanisms works in order to form this hot Jovian-size planets. We find that several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism (planet–planet scattering or Lidov–Kozai migration). These include both the 3-day pile-up and the distribution in the eccentricity versus semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov–Kozai trapping favours a more random distribution (or even a preference for near polar orbits), planet–planet scattering shows a large portion of bodies nearly aligned with the equator of the central star. This is more consistent with the distribution of known hot planets, perhaps indicating that scattering may be a more efficient mechanism for producing these bodies.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32263
Beauge, Cristian; Marti, Javier Guillermo; Stellar scattering and the formation of hot Jupiters in binary systems; Cambridge University Press; International Journal Of Astrobiology; 14; 2; 4-2014; 313-320
1473-5504
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32263
identifier_str_mv Beauge, Cristian; Marti, Javier Guillermo; Stellar scattering and the formation of hot Jupiters in binary systems; Cambridge University Press; International Journal Of Astrobiology; 14; 2; 4-2014; 313-320
1473-5504
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/S147355041400007X
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/stellar-scattering-and-the-formation-of-hot-jupiters-in-binary-systems/4A5F9D0347D20642EDEBF29766888DA5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614405351800832
score 13.070432