Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation

Autores
Gayol, Maria Fernanda; Pramparo, Maria del Carmen; Miro Erdmann, Silvia M.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD) of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method.
Fil: Gayol, Maria Fernanda. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Pramparo, Maria del Carmen. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina
Fil: Miro Erdmann, Silvia M.. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina
Materia
MODELING
MOLECULAR DISTILLATION
OILY MIXTURES
PROPERTIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80793

id CONICETDig_6f60975eccade2b6c75221bc43eabde7
oai_identifier_str oai:ri.conicet.gov.ar:11336/80793
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillationGayol, Maria FernandaPramparo, Maria del CarmenMiro Erdmann, Silvia M.MODELINGMOLECULAR DISTILLATIONOILY MIXTURESPROPERTIEShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD) of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method.Fil: Gayol, Maria Fernanda. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Pramparo, Maria del Carmen. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; ArgentinaFil: Miro Erdmann, Silvia M.. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; ArgentinaInstituto de la Grasa2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80793Gayol, Maria Fernanda; Pramparo, Maria del Carmen; Miro Erdmann, Silvia M.; Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation; Instituto de la Grasa; Grasas y Aceites; 68; 2; 4-2017; 1-70017-34951988-4284CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1660info:eu-repo/semantics/altIdentifier/doi/10.3989/gya.1051162info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:11Zoai:ri.conicet.gov.ar:11336/80793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:12.266CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
title Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
spellingShingle Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
Gayol, Maria Fernanda
MODELING
MOLECULAR DISTILLATION
OILY MIXTURES
PROPERTIES
title_short Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
title_full Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
title_fullStr Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
title_full_unstemmed Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
title_sort Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation
dc.creator.none.fl_str_mv Gayol, Maria Fernanda
Pramparo, Maria del Carmen
Miro Erdmann, Silvia M.
author Gayol, Maria Fernanda
author_facet Gayol, Maria Fernanda
Pramparo, Maria del Carmen
Miro Erdmann, Silvia M.
author_role author
author2 Pramparo, Maria del Carmen
Miro Erdmann, Silvia M.
author2_role author
author
dc.subject.none.fl_str_mv MODELING
MOLECULAR DISTILLATION
OILY MIXTURES
PROPERTIES
topic MODELING
MOLECULAR DISTILLATION
OILY MIXTURES
PROPERTIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD) of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method.
Fil: Gayol, Maria Fernanda. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Pramparo, Maria del Carmen. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina
Fil: Miro Erdmann, Silvia M.. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina
description A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD) of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80793
Gayol, Maria Fernanda; Pramparo, Maria del Carmen; Miro Erdmann, Silvia M.; Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation; Instituto de la Grasa; Grasas y Aceites; 68; 2; 4-2017; 1-7
0017-3495
1988-4284
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80793
identifier_str_mv Gayol, Maria Fernanda; Pramparo, Maria del Carmen; Miro Erdmann, Silvia M.; Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation; Instituto de la Grasa; Grasas y Aceites; 68; 2; 4-2017; 1-7
0017-3495
1988-4284
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1660
info:eu-repo/semantics/altIdentifier/doi/10.3989/gya.1051162
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Instituto de la Grasa
publisher.none.fl_str_mv Instituto de la Grasa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613689995427840
score 13.070432