Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises

Autores
Taboada, Miguel Angel; Lavado, Raul Silvio; Rubio, Gerardo; Cosentino, Diego
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Soil volumetric changes have been seldom studied in seasonally ponded soils subjected to periodic water table rises. In the Flooding Pampa of Argentina the topsoils develop significant swelling and shrinkage, despite their low percentages of total and expansible clay. We tested the hypothesis that: (a) the swelling of a Natraquoll and a Natraqualf of this region is caused by the wide change in water contents during ponding-drying cycles; and (b) soil swelling is accentuated by the effect of air entrapment ahead of the advance of soil wetting fronts. The relationship between the reciprocal of bulk density (i.e. soil specific volume), ν, and water content, θ, was determined in the laboratory (clod shrinkage curves) and in the field (repeated core sampling). Soil clods behaved in accordance to their inherent soil properties, with zero and residual shrinkage (slope n = δν/δθ< 1) in both top horizons, and normal shrinkage (slope n = δν/δθ≈ 1) throughout the water content range of Bt horizons. Unlike the clods, in the field the slope, n, was as high as 1.47-1.48 in top horizons, and 1.93-1.98 in both Bt horizons, showing the occurrence of abnormal soil swelling processes. Taking into account the narrow volumetric water content range found in the field (i.e. 0.25 v/v in both Bt horizons), this rejects our first proposed hypothesis. Soil air became trapped ahead of the advance of two field wetting fronts: (a) water table rises from depth and (b) surface ponded water. As a result, pore air volume increased during soil wetting, and was as high as 0.24-0.34 v/v, and 0.35 v/v at the maximum swelling limit of top and Bt horizons, respectively. Results show that air entrapment caused the swelling or "inflation" of soils, which agrees with our second hypothesis. However, the influence of air entrapment was more pronounced than a simple accentuation of swelling in Bt horizons. Air entrapment caused the whole soil to a depth of about 0.4 m to expand.
Fil: Taboada, Miguel Angel. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lavado, Raul Silvio. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rubio, Gerardo. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cosentino, Diego. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Soil Dynamics
Swelling Soils
Volumetric Analysis
Water Flooding
Water Regimes
Water Table
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59301

id CONICETDig_6f40035d31281ece9958b66b55ae3123
oai_identifier_str oai:ri.conicet.gov.ar:11336/59301
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table risesTaboada, Miguel AngelLavado, Raul SilvioRubio, GerardoCosentino, DiegoSoil DynamicsSwelling SoilsVolumetric AnalysisWater FloodingWater RegimesWater Tablehttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Soil volumetric changes have been seldom studied in seasonally ponded soils subjected to periodic water table rises. In the Flooding Pampa of Argentina the topsoils develop significant swelling and shrinkage, despite their low percentages of total and expansible clay. We tested the hypothesis that: (a) the swelling of a Natraquoll and a Natraqualf of this region is caused by the wide change in water contents during ponding-drying cycles; and (b) soil swelling is accentuated by the effect of air entrapment ahead of the advance of soil wetting fronts. The relationship between the reciprocal of bulk density (i.e. soil specific volume), ν, and water content, θ, was determined in the laboratory (clod shrinkage curves) and in the field (repeated core sampling). Soil clods behaved in accordance to their inherent soil properties, with zero and residual shrinkage (slope n = δν/δθ< 1) in both top horizons, and normal shrinkage (slope n = δν/δθ≈ 1) throughout the water content range of Bt horizons. Unlike the clods, in the field the slope, n, was as high as 1.47-1.48 in top horizons, and 1.93-1.98 in both Bt horizons, showing the occurrence of abnormal soil swelling processes. Taking into account the narrow volumetric water content range found in the field (i.e. 0.25 v/v in both Bt horizons), this rejects our first proposed hypothesis. Soil air became trapped ahead of the advance of two field wetting fronts: (a) water table rises from depth and (b) surface ponded water. As a result, pore air volume increased during soil wetting, and was as high as 0.24-0.34 v/v, and 0.35 v/v at the maximum swelling limit of top and Bt horizons, respectively. Results show that air entrapment caused the swelling or "inflation" of soils, which agrees with our second hypothesis. However, the influence of air entrapment was more pronounced than a simple accentuation of swelling in Bt horizons. Air entrapment caused the whole soil to a depth of about 0.4 m to expand.Fil: Taboada, Miguel Angel. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lavado, Raul Silvio. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rubio, Gerardo. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cosentino, Diego. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2001-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59301Taboada, Miguel Angel; Lavado, Raul Silvio; Rubio, Gerardo; Cosentino, Diego; Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises; Elsevier Science; Geoderma; 101; 3-4; 11-2001; 49-640016-7061CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0016706100000896info:eu-repo/semantics/altIdentifier/doi/10.1016/S0016-7061(00)00089-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:30Zoai:ri.conicet.gov.ar:11336/59301instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:30.555CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
title Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
spellingShingle Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
Taboada, Miguel Angel
Soil Dynamics
Swelling Soils
Volumetric Analysis
Water Flooding
Water Regimes
Water Table
title_short Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
title_full Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
title_fullStr Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
title_full_unstemmed Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
title_sort Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises
dc.creator.none.fl_str_mv Taboada, Miguel Angel
Lavado, Raul Silvio
Rubio, Gerardo
Cosentino, Diego
author Taboada, Miguel Angel
author_facet Taboada, Miguel Angel
Lavado, Raul Silvio
Rubio, Gerardo
Cosentino, Diego
author_role author
author2 Lavado, Raul Silvio
Rubio, Gerardo
Cosentino, Diego
author2_role author
author
author
dc.subject.none.fl_str_mv Soil Dynamics
Swelling Soils
Volumetric Analysis
Water Flooding
Water Regimes
Water Table
topic Soil Dynamics
Swelling Soils
Volumetric Analysis
Water Flooding
Water Regimes
Water Table
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Soil volumetric changes have been seldom studied in seasonally ponded soils subjected to periodic water table rises. In the Flooding Pampa of Argentina the topsoils develop significant swelling and shrinkage, despite their low percentages of total and expansible clay. We tested the hypothesis that: (a) the swelling of a Natraquoll and a Natraqualf of this region is caused by the wide change in water contents during ponding-drying cycles; and (b) soil swelling is accentuated by the effect of air entrapment ahead of the advance of soil wetting fronts. The relationship between the reciprocal of bulk density (i.e. soil specific volume), ν, and water content, θ, was determined in the laboratory (clod shrinkage curves) and in the field (repeated core sampling). Soil clods behaved in accordance to their inherent soil properties, with zero and residual shrinkage (slope n = δν/δθ< 1) in both top horizons, and normal shrinkage (slope n = δν/δθ≈ 1) throughout the water content range of Bt horizons. Unlike the clods, in the field the slope, n, was as high as 1.47-1.48 in top horizons, and 1.93-1.98 in both Bt horizons, showing the occurrence of abnormal soil swelling processes. Taking into account the narrow volumetric water content range found in the field (i.e. 0.25 v/v in both Bt horizons), this rejects our first proposed hypothesis. Soil air became trapped ahead of the advance of two field wetting fronts: (a) water table rises from depth and (b) surface ponded water. As a result, pore air volume increased during soil wetting, and was as high as 0.24-0.34 v/v, and 0.35 v/v at the maximum swelling limit of top and Bt horizons, respectively. Results show that air entrapment caused the swelling or "inflation" of soils, which agrees with our second hypothesis. However, the influence of air entrapment was more pronounced than a simple accentuation of swelling in Bt horizons. Air entrapment caused the whole soil to a depth of about 0.4 m to expand.
Fil: Taboada, Miguel Angel. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lavado, Raul Silvio. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rubio, Gerardo. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cosentino, Diego. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Ingenieria Agricola y Uso de la Tierra; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Soil volumetric changes have been seldom studied in seasonally ponded soils subjected to periodic water table rises. In the Flooding Pampa of Argentina the topsoils develop significant swelling and shrinkage, despite their low percentages of total and expansible clay. We tested the hypothesis that: (a) the swelling of a Natraquoll and a Natraqualf of this region is caused by the wide change in water contents during ponding-drying cycles; and (b) soil swelling is accentuated by the effect of air entrapment ahead of the advance of soil wetting fronts. The relationship between the reciprocal of bulk density (i.e. soil specific volume), ν, and water content, θ, was determined in the laboratory (clod shrinkage curves) and in the field (repeated core sampling). Soil clods behaved in accordance to their inherent soil properties, with zero and residual shrinkage (slope n = δν/δθ< 1) in both top horizons, and normal shrinkage (slope n = δν/δθ≈ 1) throughout the water content range of Bt horizons. Unlike the clods, in the field the slope, n, was as high as 1.47-1.48 in top horizons, and 1.93-1.98 in both Bt horizons, showing the occurrence of abnormal soil swelling processes. Taking into account the narrow volumetric water content range found in the field (i.e. 0.25 v/v in both Bt horizons), this rejects our first proposed hypothesis. Soil air became trapped ahead of the advance of two field wetting fronts: (a) water table rises from depth and (b) surface ponded water. As a result, pore air volume increased during soil wetting, and was as high as 0.24-0.34 v/v, and 0.35 v/v at the maximum swelling limit of top and Bt horizons, respectively. Results show that air entrapment caused the swelling or "inflation" of soils, which agrees with our second hypothesis. However, the influence of air entrapment was more pronounced than a simple accentuation of swelling in Bt horizons. Air entrapment caused the whole soil to a depth of about 0.4 m to expand.
publishDate 2001
dc.date.none.fl_str_mv 2001-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59301
Taboada, Miguel Angel; Lavado, Raul Silvio; Rubio, Gerardo; Cosentino, Diego; Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises; Elsevier Science; Geoderma; 101; 3-4; 11-2001; 49-64
0016-7061
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59301
identifier_str_mv Taboada, Miguel Angel; Lavado, Raul Silvio; Rubio, Gerardo; Cosentino, Diego; Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table rises; Elsevier Science; Geoderma; 101; 3-4; 11-2001; 49-64
0016-7061
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0016706100000896
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0016-7061(00)00089-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613655159635968
score 13.070432