A knowledge-driven approach for process supervision in chemical plants
- Autores
- Musulin, Estanislao; Roda, Fernando
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, an ontology-based framework for process supervision in chemical plants is presented. A conceptualization of equipment, control systems and hazards has been developed. This conceptual model includes the semantic of each modeled term in order to obtain a heavyweight ontology. The ontology has been formalized using Description Logic (DL). A knowledge-driven approach has been adopted in order to demonstrate how DL reasoning could be used to support process supervision, detecting and diagnosing faults, without the help of external agents. In the proposed approach, a DL reasoner adds implicit facts to the ontology through forward chaining reasoning, from the current measurements to the characterization of hazards. Additionally, the system is able to check knowledge consistency and formally explain the obtained results. The system functionality has been illustrated in the Tennessee Eastman process.benchmark.
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
ALARM MANAGEMENT
DESCRIPTION LOGIC
ONTOLOGY
PROCESS SUPERVISION
TENNESSEE EASTMAN PROCESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1439
Ver los metadatos del registro completo
id |
CONICETDig_6ee6a89898e38c7d2b21e43d72242962 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1439 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A knowledge-driven approach for process supervision in chemical plantsMusulin, EstanislaoRoda, FernandoALARM MANAGEMENTDESCRIPTION LOGICONTOLOGYPROCESS SUPERVISIONTENNESSEE EASTMAN PROCESShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, an ontology-based framework for process supervision in chemical plants is presented. A conceptualization of equipment, control systems and hazards has been developed. This conceptual model includes the semantic of each modeled term in order to obtain a heavyweight ontology. The ontology has been formalized using Description Logic (DL). A knowledge-driven approach has been adopted in order to demonstrate how DL reasoning could be used to support process supervision, detecting and diagnosing faults, without the help of external agents. In the proposed approach, a DL reasoner adds implicit facts to the ontology through forward chaining reasoning, from the current measurements to the characterization of hazards. Additionally, the system is able to check knowledge consistency and formally explain the obtained results. The system functionality has been illustrated in the Tennessee Eastman process.benchmark.Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaPergamon-Elsevier Science Ltd2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1439Musulin, Estanislao; Roda, Fernando; A knowledge-driven approach for process supervision in chemical plants; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 6-2013; 164-1770098-1354enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.06.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:46Zoai:ri.conicet.gov.ar:11336/1439instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:46.936CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A knowledge-driven approach for process supervision in chemical plants |
title |
A knowledge-driven approach for process supervision in chemical plants |
spellingShingle |
A knowledge-driven approach for process supervision in chemical plants Musulin, Estanislao ALARM MANAGEMENT DESCRIPTION LOGIC ONTOLOGY PROCESS SUPERVISION TENNESSEE EASTMAN PROCESS |
title_short |
A knowledge-driven approach for process supervision in chemical plants |
title_full |
A knowledge-driven approach for process supervision in chemical plants |
title_fullStr |
A knowledge-driven approach for process supervision in chemical plants |
title_full_unstemmed |
A knowledge-driven approach for process supervision in chemical plants |
title_sort |
A knowledge-driven approach for process supervision in chemical plants |
dc.creator.none.fl_str_mv |
Musulin, Estanislao Roda, Fernando |
author |
Musulin, Estanislao |
author_facet |
Musulin, Estanislao Roda, Fernando |
author_role |
author |
author2 |
Roda, Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALARM MANAGEMENT DESCRIPTION LOGIC ONTOLOGY PROCESS SUPERVISION TENNESSEE EASTMAN PROCESS |
topic |
ALARM MANAGEMENT DESCRIPTION LOGIC ONTOLOGY PROCESS SUPERVISION TENNESSEE EASTMAN PROCESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, an ontology-based framework for process supervision in chemical plants is presented. A conceptualization of equipment, control systems and hazards has been developed. This conceptual model includes the semantic of each modeled term in order to obtain a heavyweight ontology. The ontology has been formalized using Description Logic (DL). A knowledge-driven approach has been adopted in order to demonstrate how DL reasoning could be used to support process supervision, detecting and diagnosing faults, without the help of external agents. In the proposed approach, a DL reasoner adds implicit facts to the ontology through forward chaining reasoning, from the current measurements to the characterization of hazards. Additionally, the system is able to check knowledge consistency and formally explain the obtained results. The system functionality has been illustrated in the Tennessee Eastman process.benchmark. Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
In this work, an ontology-based framework for process supervision in chemical plants is presented. A conceptualization of equipment, control systems and hazards has been developed. This conceptual model includes the semantic of each modeled term in order to obtain a heavyweight ontology. The ontology has been formalized using Description Logic (DL). A knowledge-driven approach has been adopted in order to demonstrate how DL reasoning could be used to support process supervision, detecting and diagnosing faults, without the help of external agents. In the proposed approach, a DL reasoner adds implicit facts to the ontology through forward chaining reasoning, from the current measurements to the characterization of hazards. Additionally, the system is able to check knowledge consistency and formally explain the obtained results. The system functionality has been illustrated in the Tennessee Eastman process.benchmark. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1439 Musulin, Estanislao; Roda, Fernando; A knowledge-driven approach for process supervision in chemical plants; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 6-2013; 164-177 0098-1354 |
url |
http://hdl.handle.net/11336/1439 |
identifier_str_mv |
Musulin, Estanislao; Roda, Fernando; A knowledge-driven approach for process supervision in chemical plants; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 6-2013; 164-177 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.06.009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613431292854272 |
score |
13.070432 |