A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction
- Autores
- Bragagnolo, Sergio Nicolás; Vaschetti, Jorge Carlos; Magnago, Fernando
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One-level optimization methods have been proposed to optimize a single user’s load profile or a cluster of users in the smart grids. In this work, two two-level optimization methods are studied, one case considering technical requirements (case 1) and another considering economic criterion (case 2). In the upper level, the supplier optimizes the objective function. Meanwhile, at the lower level, users optimize their electrical costs. The proposed methods are based on Genetic Algorithm methods. In this sense, an indirect control is established in which users react to a price signal. Simulation results illustrate that both cases improve the demand profile and increase the retailer profit concerning an unscheduled case. However, when the supplier tries to maximize the profit, some users receive benefits to detriment of others, concluding that the technical approach is preferable to the economic one.
Fil: Bragagnolo, Sergio Nicolás. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Centro de Investigacion Desarrollo y Transferencia de Ingenieria En Energia Electrica.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Vaschetti, Jorge Carlos. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Centro de Investigacion Desarrollo y Transferencia de Ingenieria En Energia Electrica.; Argentina
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Grupo de Electrónica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
DEMAND RESPONSE
DEMAND SIDE MANAGEMENT
GENETIC ALGORITHM
INDIRECT CONTROL
MULTILEVEL OPTIMIZATION
SMART GRIDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157856
Ver los metadatos del registro completo
id |
CONICETDig_6e3bc4a3ead4088ce4300ceef560eb85 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157856 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interactionBragagnolo, Sergio NicolásVaschetti, Jorge CarlosMagnago, FernandoDEMAND RESPONSEDEMAND SIDE MANAGEMENTGENETIC ALGORITHMINDIRECT CONTROLMULTILEVEL OPTIMIZATIONSMART GRIDShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2One-level optimization methods have been proposed to optimize a single user’s load profile or a cluster of users in the smart grids. In this work, two two-level optimization methods are studied, one case considering technical requirements (case 1) and another considering economic criterion (case 2). In the upper level, the supplier optimizes the objective function. Meanwhile, at the lower level, users optimize their electrical costs. The proposed methods are based on Genetic Algorithm methods. In this sense, an indirect control is established in which users react to a price signal. Simulation results illustrate that both cases improve the demand profile and increase the retailer profit concerning an unscheduled case. However, when the supplier tries to maximize the profit, some users receive benefits to detriment of others, concluding that the technical approach is preferable to the economic one.Fil: Bragagnolo, Sergio Nicolás. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Centro de Investigacion Desarrollo y Transferencia de Ingenieria En Energia Electrica.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Vaschetti, Jorge Carlos. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Centro de Investigacion Desarrollo y Transferencia de Ingenieria En Energia Electrica.; ArgentinaFil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Grupo de Electrónica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaKing Saud University2021-02-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157856Bragagnolo, Sergio Nicolás; Vaschetti, Jorge Carlos; Magnago, Fernando; A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction; King Saud University; Journal of King Saud University - Engineering Sciences; 2021; 17-2-2021; 1-81018-36392213-1558CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/ark/https://linkinghub.elsevier.com/retrieve/pii/S1018363921000210info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jksues.2021.02.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:12Zoai:ri.conicet.gov.ar:11336/157856instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:12.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
title |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
spellingShingle |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction Bragagnolo, Sergio Nicolás DEMAND RESPONSE DEMAND SIDE MANAGEMENT GENETIC ALGORITHM INDIRECT CONTROL MULTILEVEL OPTIMIZATION SMART GRIDS |
title_short |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
title_full |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
title_fullStr |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
title_full_unstemmed |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
title_sort |
A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction |
dc.creator.none.fl_str_mv |
Bragagnolo, Sergio Nicolás Vaschetti, Jorge Carlos Magnago, Fernando |
author |
Bragagnolo, Sergio Nicolás |
author_facet |
Bragagnolo, Sergio Nicolás Vaschetti, Jorge Carlos Magnago, Fernando |
author_role |
author |
author2 |
Vaschetti, Jorge Carlos Magnago, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DEMAND RESPONSE DEMAND SIDE MANAGEMENT GENETIC ALGORITHM INDIRECT CONTROL MULTILEVEL OPTIMIZATION SMART GRIDS |
topic |
DEMAND RESPONSE DEMAND SIDE MANAGEMENT GENETIC ALGORITHM INDIRECT CONTROL MULTILEVEL OPTIMIZATION SMART GRIDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
One-level optimization methods have been proposed to optimize a single user’s load profile or a cluster of users in the smart grids. In this work, two two-level optimization methods are studied, one case considering technical requirements (case 1) and another considering economic criterion (case 2). In the upper level, the supplier optimizes the objective function. Meanwhile, at the lower level, users optimize their electrical costs. The proposed methods are based on Genetic Algorithm methods. In this sense, an indirect control is established in which users react to a price signal. Simulation results illustrate that both cases improve the demand profile and increase the retailer profit concerning an unscheduled case. However, when the supplier tries to maximize the profit, some users receive benefits to detriment of others, concluding that the technical approach is preferable to the economic one. Fil: Bragagnolo, Sergio Nicolás. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Centro de Investigacion Desarrollo y Transferencia de Ingenieria En Energia Electrica.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Vaschetti, Jorge Carlos. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Centro de Investigacion Desarrollo y Transferencia de Ingenieria En Energia Electrica.; Argentina Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Grupo de Electrónica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
One-level optimization methods have been proposed to optimize a single user’s load profile or a cluster of users in the smart grids. In this work, two two-level optimization methods are studied, one case considering technical requirements (case 1) and another considering economic criterion (case 2). In the upper level, the supplier optimizes the objective function. Meanwhile, at the lower level, users optimize their electrical costs. The proposed methods are based on Genetic Algorithm methods. In this sense, an indirect control is established in which users react to a price signal. Simulation results illustrate that both cases improve the demand profile and increase the retailer profit concerning an unscheduled case. However, when the supplier tries to maximize the profit, some users receive benefits to detriment of others, concluding that the technical approach is preferable to the economic one. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-17 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157856 Bragagnolo, Sergio Nicolás; Vaschetti, Jorge Carlos; Magnago, Fernando; A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction; King Saud University; Journal of King Saud University - Engineering Sciences; 2021; 17-2-2021; 1-8 1018-3639 2213-1558 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157856 |
identifier_str_mv |
Bragagnolo, Sergio Nicolás; Vaschetti, Jorge Carlos; Magnago, Fernando; A technical and economic approach to multi-level optimization models for electricity demand considering user-supplier interaction; King Saud University; Journal of King Saud University - Engineering Sciences; 2021; 17-2-2021; 1-8 1018-3639 2213-1558 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/ark/https://linkinghub.elsevier.com/retrieve/pii/S1018363921000210 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jksues.2021.02.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
King Saud University |
publisher.none.fl_str_mv |
King Saud University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614250439376896 |
score |
13.070432 |