An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes
- Autores
- Nesmachnow, Sergio; Rossit, Diego Gabriel; Toutouh, Jamal; Luna, Francisco
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Modern Smart Cities are highly dependent on an efficient energy service since electricity is used in an increasing number of urban activities. In this regard, Time-of-Use prices for electricity is a widely implemented policy that has been successful to balance electricity consumption along the day and, thus, diminish the stress and risk of shortcuts of electric grids in peak hours. Indeed, residential customers may now schedule the use of deferrable electrical appliances in their smart homes in off-peak hours to reduce the electricity bill. In this context, this work aims to develop an automatic planning tool that accounts for minimizing the electricity costs and enhancing user satisfaction, allowing them to make more efficient usage of the energy consumed. The household energy consumption planning problem is addressed with a multiobjective evolutionary algorithm, for which problem-specific operators are devised, and a set of state-of-the-art greedy algorithms aim to optimize different criteria. The proposed resolution algorithms are tested over a set of realistic instances built using real-world energy consumption data, Time-of-Use prices from an electricity company, and user preferences estimated from historical information and sensor data. The results show that the evolutionary algorithm is able to improve upon the greedy algorithms both in terms of the electricity costs and user satisfaction and largely outperforms to a large extent the current strategy without planning implemented by users.
Fil: Nesmachnow, Sergio. Facultad de Ingeniería; Uruguay
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Toutouh, Jamal. Massachusetts Institute of Technology. Science And Artificial Intelligence Laboratory; Estados Unidos
Fil: Luna, Francisco. Universidad de Málaga. Instituto de Tecnologías e Ingeniería del Software; España - Materia
-
SMART CITIES
ENERGY CONSUMPTION PLANNING PROBLEM
USER PREFERENCES
MULTIOBJECTIVE OPTIMIZATION
EVOLUTIONARY ALGORITHM
GREEDY ALGORITHMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/138290
Ver los metadatos del registro completo
id |
CONICETDig_0f02258777761b4c6d4e0667d81f7655 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/138290 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homesNesmachnow, SergioRossit, Diego GabrielToutouh, JamalLuna, FranciscoSMART CITIESENERGY CONSUMPTION PLANNING PROBLEMUSER PREFERENCESMULTIOBJECTIVE OPTIMIZATIONEVOLUTIONARY ALGORITHMGREEDY ALGORITHMShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Modern Smart Cities are highly dependent on an efficient energy service since electricity is used in an increasing number of urban activities. In this regard, Time-of-Use prices for electricity is a widely implemented policy that has been successful to balance electricity consumption along the day and, thus, diminish the stress and risk of shortcuts of electric grids in peak hours. Indeed, residential customers may now schedule the use of deferrable electrical appliances in their smart homes in off-peak hours to reduce the electricity bill. In this context, this work aims to develop an automatic planning tool that accounts for minimizing the electricity costs and enhancing user satisfaction, allowing them to make more efficient usage of the energy consumed. The household energy consumption planning problem is addressed with a multiobjective evolutionary algorithm, for which problem-specific operators are devised, and a set of state-of-the-art greedy algorithms aim to optimize different criteria. The proposed resolution algorithms are tested over a set of realistic instances built using real-world energy consumption data, Time-of-Use prices from an electricity company, and user preferences estimated from historical information and sensor data. The results show that the evolutionary algorithm is able to improve upon the greedy algorithms both in terms of the electricity costs and user satisfaction and largely outperforms to a large extent the current strategy without planning implemented by users.Fil: Nesmachnow, Sergio. Facultad de Ingeniería; UruguayFil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Toutouh, Jamal. Massachusetts Institute of Technology. Science And Artificial Intelligence Laboratory; Estados UnidosFil: Luna, Francisco. Universidad de Málaga. Instituto de Tecnologías e Ingeniería del Software; EspañaGrowing Science2021-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138290Nesmachnow, Sergio; Rossit, Diego Gabriel; Toutouh, Jamal; Luna, Francisco; An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes; Growing Science; International Journal of Industrial Engineering Computations; 12; 4; 12-5-2021; 365-3801923-29261923-2934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/4893-an-explicit-evolutionary-approach-for-multiobjective-energy-consumption-planning-considering-user-preferences-in-smart-homes.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2021.5.005info:eu-repo/semantics/altIdentifier/url/http://www.growingscience.com/ijiec/Vol12/IJIEC_2021_15.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:45Zoai:ri.conicet.gov.ar:11336/138290instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:45.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
title |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
spellingShingle |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes Nesmachnow, Sergio SMART CITIES ENERGY CONSUMPTION PLANNING PROBLEM USER PREFERENCES MULTIOBJECTIVE OPTIMIZATION EVOLUTIONARY ALGORITHM GREEDY ALGORITHMS |
title_short |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
title_full |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
title_fullStr |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
title_full_unstemmed |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
title_sort |
An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes |
dc.creator.none.fl_str_mv |
Nesmachnow, Sergio Rossit, Diego Gabriel Toutouh, Jamal Luna, Francisco |
author |
Nesmachnow, Sergio |
author_facet |
Nesmachnow, Sergio Rossit, Diego Gabriel Toutouh, Jamal Luna, Francisco |
author_role |
author |
author2 |
Rossit, Diego Gabriel Toutouh, Jamal Luna, Francisco |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SMART CITIES ENERGY CONSUMPTION PLANNING PROBLEM USER PREFERENCES MULTIOBJECTIVE OPTIMIZATION EVOLUTIONARY ALGORITHM GREEDY ALGORITHMS |
topic |
SMART CITIES ENERGY CONSUMPTION PLANNING PROBLEM USER PREFERENCES MULTIOBJECTIVE OPTIMIZATION EVOLUTIONARY ALGORITHM GREEDY ALGORITHMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Modern Smart Cities are highly dependent on an efficient energy service since electricity is used in an increasing number of urban activities. In this regard, Time-of-Use prices for electricity is a widely implemented policy that has been successful to balance electricity consumption along the day and, thus, diminish the stress and risk of shortcuts of electric grids in peak hours. Indeed, residential customers may now schedule the use of deferrable electrical appliances in their smart homes in off-peak hours to reduce the electricity bill. In this context, this work aims to develop an automatic planning tool that accounts for minimizing the electricity costs and enhancing user satisfaction, allowing them to make more efficient usage of the energy consumed. The household energy consumption planning problem is addressed with a multiobjective evolutionary algorithm, for which problem-specific operators are devised, and a set of state-of-the-art greedy algorithms aim to optimize different criteria. The proposed resolution algorithms are tested over a set of realistic instances built using real-world energy consumption data, Time-of-Use prices from an electricity company, and user preferences estimated from historical information and sensor data. The results show that the evolutionary algorithm is able to improve upon the greedy algorithms both in terms of the electricity costs and user satisfaction and largely outperforms to a large extent the current strategy without planning implemented by users. Fil: Nesmachnow, Sergio. Facultad de Ingeniería; Uruguay Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Toutouh, Jamal. Massachusetts Institute of Technology. Science And Artificial Intelligence Laboratory; Estados Unidos Fil: Luna, Francisco. Universidad de Málaga. Instituto de Tecnologías e Ingeniería del Software; España |
description |
Modern Smart Cities are highly dependent on an efficient energy service since electricity is used in an increasing number of urban activities. In this regard, Time-of-Use prices for electricity is a widely implemented policy that has been successful to balance electricity consumption along the day and, thus, diminish the stress and risk of shortcuts of electric grids in peak hours. Indeed, residential customers may now schedule the use of deferrable electrical appliances in their smart homes in off-peak hours to reduce the electricity bill. In this context, this work aims to develop an automatic planning tool that accounts for minimizing the electricity costs and enhancing user satisfaction, allowing them to make more efficient usage of the energy consumed. The household energy consumption planning problem is addressed with a multiobjective evolutionary algorithm, for which problem-specific operators are devised, and a set of state-of-the-art greedy algorithms aim to optimize different criteria. The proposed resolution algorithms are tested over a set of realistic instances built using real-world energy consumption data, Time-of-Use prices from an electricity company, and user preferences estimated from historical information and sensor data. The results show that the evolutionary algorithm is able to improve upon the greedy algorithms both in terms of the electricity costs and user satisfaction and largely outperforms to a large extent the current strategy without planning implemented by users. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/138290 Nesmachnow, Sergio; Rossit, Diego Gabriel; Toutouh, Jamal; Luna, Francisco; An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes; Growing Science; International Journal of Industrial Engineering Computations; 12; 4; 12-5-2021; 365-380 1923-2926 1923-2934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/138290 |
identifier_str_mv |
Nesmachnow, Sergio; Rossit, Diego Gabriel; Toutouh, Jamal; Luna, Francisco; An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes; Growing Science; International Journal of Industrial Engineering Computations; 12; 4; 12-5-2021; 365-380 1923-2926 1923-2934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/4893-an-explicit-evolutionary-approach-for-multiobjective-energy-consumption-planning-considering-user-preferences-in-smart-homes.html info:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2021.5.005 info:eu-repo/semantics/altIdentifier/url/http://www.growingscience.com/ijiec/Vol12/IJIEC_2021_15.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Growing Science |
publisher.none.fl_str_mv |
Growing Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269874571706368 |
score |
13.13397 |