Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass
- Autores
- Campana, María Sofía; Reyes, María Fernanda; Aguiar, Martin Roberto
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Questions: Arid communities are strongly limited by soil resources including water and nitrogen (N). Plants compete for N with other plants and microorganisms, which are also limited by carbon (C). We propose that above- and below-ground plant responses to soil resources are modulated by community structure (species relative abundances, “mass ratio hypothesis”) and species traits (relative growth rates — RGRs). We evaluated the single and combined effects of soil N and C addition on the above- and below-ground biomass accumulation of perennial grass patches in an arid community, and the mechanisms involved in their responses. Location: Patagonian steppe, Argentina. Methods: We added N (2 g N m−2; NH4NO3) and C (330 g C m−2; sucrose) to 1-m2 field plots in a factorial design. After two years, we harvested above-ground (n = 5 plots) and below-ground biomass (n = 10 soil cores) and sorted it by species. We measured potential soil respiration as a proxy of microbial activity. Results: Total above-ground biomass increased by 55% as a result of N and decreased by 45% as a result of C addition, in relation to controls. C addition reduced total below-ground biomass by 42%. The above-ground differences were associated with changes in the biomass of dominant species according to their RGRs. Poa ligularis (dominant, high RGR) increased by 92% as a result of N addition while Pappostipa speciosa (dominant, low RGR) decreased by 55% as a result of C addition. Intermediate and subordinate grasses did not modify their biomass, independently of their RGR. Potential soil respiration was three times higher in plots with C addition than in control plots. Conclusions: Community biomass was explained by a combination of mass ratio hypothesis and specific RGR, as dominant grasses controlled above-ground community responses to N (high-RGR species) and C addition (low-RGR species). Our findings highlight the independence between the above- and below-ground processes and the importance of considering community equitability and species characteristics to predict plant community responses to changes in soil resources.
Fil: Campana, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Reyes, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina - Materia
-
BIOMASS ACCUMULATION
DOMINANT SPECIES
MASS RATIO HYPOTHESIS
PATAGONIAN STEPPE
PERENNIAL GRASSES
POTENTIAL SOIL RESPIRATION
RELATIVE GROWTH RATES (RGR)
SUBORDINATE SPECIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216793
Ver los metadatos del registro completo
| id |
CONICETDig_6df60480aec66881c3e955850b1ee11d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216793 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomassCampana, María SofíaReyes, María FernandaAguiar, Martin RobertoBIOMASS ACCUMULATIONDOMINANT SPECIESMASS RATIO HYPOTHESISPATAGONIAN STEPPEPERENNIAL GRASSESPOTENTIAL SOIL RESPIRATIONRELATIVE GROWTH RATES (RGR)SUBORDINATE SPECIEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Questions: Arid communities are strongly limited by soil resources including water and nitrogen (N). Plants compete for N with other plants and microorganisms, which are also limited by carbon (C). We propose that above- and below-ground plant responses to soil resources are modulated by community structure (species relative abundances, “mass ratio hypothesis”) and species traits (relative growth rates — RGRs). We evaluated the single and combined effects of soil N and C addition on the above- and below-ground biomass accumulation of perennial grass patches in an arid community, and the mechanisms involved in their responses. Location: Patagonian steppe, Argentina. Methods: We added N (2 g N m−2; NH4NO3) and C (330 g C m−2; sucrose) to 1-m2 field plots in a factorial design. After two years, we harvested above-ground (n = 5 plots) and below-ground biomass (n = 10 soil cores) and sorted it by species. We measured potential soil respiration as a proxy of microbial activity. Results: Total above-ground biomass increased by 55% as a result of N and decreased by 45% as a result of C addition, in relation to controls. C addition reduced total below-ground biomass by 42%. The above-ground differences were associated with changes in the biomass of dominant species according to their RGRs. Poa ligularis (dominant, high RGR) increased by 92% as a result of N addition while Pappostipa speciosa (dominant, low RGR) decreased by 55% as a result of C addition. Intermediate and subordinate grasses did not modify their biomass, independently of their RGR. Potential soil respiration was three times higher in plots with C addition than in control plots. Conclusions: Community biomass was explained by a combination of mass ratio hypothesis and specific RGR, as dominant grasses controlled above-ground community responses to N (high-RGR species) and C addition (low-RGR species). Our findings highlight the independence between the above- and below-ground processes and the importance of considering community equitability and species characteristics to predict plant community responses to changes in soil resources.Fil: Campana, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Reyes, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaWiley Blackwell Publishing, Inc2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216793Campana, María Sofía; Reyes, María Fernanda; Aguiar, Martin Roberto; Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass; Wiley Blackwell Publishing, Inc; Journal of Vegetation Science; 33; 5; 9-2022; 1-81100-9233CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/jvs.13153info:eu-repo/semantics/altIdentifier/doi/10.1111/jvs.13153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:42:27Zoai:ri.conicet.gov.ar:11336/216793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:42:27.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| title |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| spellingShingle |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass Campana, María Sofía BIOMASS ACCUMULATION DOMINANT SPECIES MASS RATIO HYPOTHESIS PATAGONIAN STEPPE PERENNIAL GRASSES POTENTIAL SOIL RESPIRATION RELATIVE GROWTH RATES (RGR) SUBORDINATE SPECIES |
| title_short |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| title_full |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| title_fullStr |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| title_full_unstemmed |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| title_sort |
Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass |
| dc.creator.none.fl_str_mv |
Campana, María Sofía Reyes, María Fernanda Aguiar, Martin Roberto |
| author |
Campana, María Sofía |
| author_facet |
Campana, María Sofía Reyes, María Fernanda Aguiar, Martin Roberto |
| author_role |
author |
| author2 |
Reyes, María Fernanda Aguiar, Martin Roberto |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
BIOMASS ACCUMULATION DOMINANT SPECIES MASS RATIO HYPOTHESIS PATAGONIAN STEPPE PERENNIAL GRASSES POTENTIAL SOIL RESPIRATION RELATIVE GROWTH RATES (RGR) SUBORDINATE SPECIES |
| topic |
BIOMASS ACCUMULATION DOMINANT SPECIES MASS RATIO HYPOTHESIS PATAGONIAN STEPPE PERENNIAL GRASSES POTENTIAL SOIL RESPIRATION RELATIVE GROWTH RATES (RGR) SUBORDINATE SPECIES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Questions: Arid communities are strongly limited by soil resources including water and nitrogen (N). Plants compete for N with other plants and microorganisms, which are also limited by carbon (C). We propose that above- and below-ground plant responses to soil resources are modulated by community structure (species relative abundances, “mass ratio hypothesis”) and species traits (relative growth rates — RGRs). We evaluated the single and combined effects of soil N and C addition on the above- and below-ground biomass accumulation of perennial grass patches in an arid community, and the mechanisms involved in their responses. Location: Patagonian steppe, Argentina. Methods: We added N (2 g N m−2; NH4NO3) and C (330 g C m−2; sucrose) to 1-m2 field plots in a factorial design. After two years, we harvested above-ground (n = 5 plots) and below-ground biomass (n = 10 soil cores) and sorted it by species. We measured potential soil respiration as a proxy of microbial activity. Results: Total above-ground biomass increased by 55% as a result of N and decreased by 45% as a result of C addition, in relation to controls. C addition reduced total below-ground biomass by 42%. The above-ground differences were associated with changes in the biomass of dominant species according to their RGRs. Poa ligularis (dominant, high RGR) increased by 92% as a result of N addition while Pappostipa speciosa (dominant, low RGR) decreased by 55% as a result of C addition. Intermediate and subordinate grasses did not modify their biomass, independently of their RGR. Potential soil respiration was three times higher in plots with C addition than in control plots. Conclusions: Community biomass was explained by a combination of mass ratio hypothesis and specific RGR, as dominant grasses controlled above-ground community responses to N (high-RGR species) and C addition (low-RGR species). Our findings highlight the independence between the above- and below-ground processes and the importance of considering community equitability and species characteristics to predict plant community responses to changes in soil resources. Fil: Campana, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Reyes, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina |
| description |
Questions: Arid communities are strongly limited by soil resources including water and nitrogen (N). Plants compete for N with other plants and microorganisms, which are also limited by carbon (C). We propose that above- and below-ground plant responses to soil resources are modulated by community structure (species relative abundances, “mass ratio hypothesis”) and species traits (relative growth rates — RGRs). We evaluated the single and combined effects of soil N and C addition on the above- and below-ground biomass accumulation of perennial grass patches in an arid community, and the mechanisms involved in their responses. Location: Patagonian steppe, Argentina. Methods: We added N (2 g N m−2; NH4NO3) and C (330 g C m−2; sucrose) to 1-m2 field plots in a factorial design. After two years, we harvested above-ground (n = 5 plots) and below-ground biomass (n = 10 soil cores) and sorted it by species. We measured potential soil respiration as a proxy of microbial activity. Results: Total above-ground biomass increased by 55% as a result of N and decreased by 45% as a result of C addition, in relation to controls. C addition reduced total below-ground biomass by 42%. The above-ground differences were associated with changes in the biomass of dominant species according to their RGRs. Poa ligularis (dominant, high RGR) increased by 92% as a result of N addition while Pappostipa speciosa (dominant, low RGR) decreased by 55% as a result of C addition. Intermediate and subordinate grasses did not modify their biomass, independently of their RGR. Potential soil respiration was three times higher in plots with C addition than in control plots. Conclusions: Community biomass was explained by a combination of mass ratio hypothesis and specific RGR, as dominant grasses controlled above-ground community responses to N (high-RGR species) and C addition (low-RGR species). Our findings highlight the independence between the above- and below-ground processes and the importance of considering community equitability and species characteristics to predict plant community responses to changes in soil resources. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216793 Campana, María Sofía; Reyes, María Fernanda; Aguiar, Martin Roberto; Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass; Wiley Blackwell Publishing, Inc; Journal of Vegetation Science; 33; 5; 9-2022; 1-8 1100-9233 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/216793 |
| identifier_str_mv |
Campana, María Sofía; Reyes, María Fernanda; Aguiar, Martin Roberto; Arid community responses to nitrogen and carbon addition depend on dominant species traits and are decoupled between above- and below-ground biomass; Wiley Blackwell Publishing, Inc; Journal of Vegetation Science; 33; 5; 9-2022; 1-8 1100-9233 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/jvs.13153 info:eu-repo/semantics/altIdentifier/doi/10.1111/jvs.13153 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976997180932096 |
| score |
13.087074 |