Bioethanol production optimization by direct numerical methods and evolutionary algorithms
- Autores
- Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Groff, Maria Carla; Gil, Rocio Mariel; Scaglia, Gustavo Juan Eduardo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper develops a dynamic optimization methodology based on direct numerical methods, for the bioethanol fed-batch production from glucose and fructose as a substrate. The mathematical model that governs the process consists of six differential equations and is highly nonlinear. The proposed strategy uses the Fourier trigonometric basis and normalized orthogonal polynomials for substrate feeding rate parameterization. Then, evolutionary algorithms and gradient methods are combined to search parameters that generate the best control action. This parameterization methodology requires a minimum number of parameters to optimize. Also, the continuous and differentiable nature of the optimal profile enables its direct implementation in the physical process, eliminating the necessity for filtering or smoothing it. In addition, they are ideal for bioprocesses, in which it is preferable to avoid abrupt changes in the operating modes of the process to promote cell growth. As a result, using only 3 parameters, a 3.5% increase in ethanol production was achieved, while the reference uses at least 10 parameters and provides a stepped feed profile. The simulations have yielded promising results, making this proposal an alternative with excellent potential for process optimization.
Fil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Gil, Rocio Mariel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina - Materia
-
NONLINEAR SYSTEM
FOURIER SERIES
OPTIMAL CONTROL
EVOLUTIONARY ALGORITHMS
BIOETHANOL PRODUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240279
Ver los metadatos del registro completo
id |
CONICETDig_6ddbd1b0f38c836fa8785fc870e1f1e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240279 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bioethanol production optimization by direct numerical methods and evolutionary algorithmsFernández Puchol, María CeciliaPantano, Maria NadiaGroff, Maria CarlaGil, Rocio MarielScaglia, Gustavo Juan EduardoNONLINEAR SYSTEMFOURIER SERIESOPTIMAL CONTROLEVOLUTIONARY ALGORITHMSBIOETHANOL PRODUCTIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper develops a dynamic optimization methodology based on direct numerical methods, for the bioethanol fed-batch production from glucose and fructose as a substrate. The mathematical model that governs the process consists of six differential equations and is highly nonlinear. The proposed strategy uses the Fourier trigonometric basis and normalized orthogonal polynomials for substrate feeding rate parameterization. Then, evolutionary algorithms and gradient methods are combined to search parameters that generate the best control action. This parameterization methodology requires a minimum number of parameters to optimize. Also, the continuous and differentiable nature of the optimal profile enables its direct implementation in the physical process, eliminating the necessity for filtering or smoothing it. In addition, they are ideal for bioprocesses, in which it is preferable to avoid abrupt changes in the operating modes of the process to promote cell growth. As a result, using only 3 parameters, a 3.5% increase in ethanol production was achieved, while the reference uses at least 10 parameters and provides a stepped feed profile. The simulations have yielded promising results, making this proposal an alternative with excellent potential for process optimization.Fil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Gil, Rocio Mariel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaInstitute of Electrical and Electronics Engineers2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240279Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Groff, Maria Carla; Gil, Rocio Mariel; Scaglia, Gustavo Juan Eduardo; Bioethanol production optimization by direct numerical methods and evolutionary algorithms; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 259-2651548-0992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8307info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2024.10431425info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:36:58Zoai:ri.conicet.gov.ar:11336/240279instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:36:58.996CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
title |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
spellingShingle |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms Fernández Puchol, María Cecilia NONLINEAR SYSTEM FOURIER SERIES OPTIMAL CONTROL EVOLUTIONARY ALGORITHMS BIOETHANOL PRODUCTION |
title_short |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
title_full |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
title_fullStr |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
title_full_unstemmed |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
title_sort |
Bioethanol production optimization by direct numerical methods and evolutionary algorithms |
dc.creator.none.fl_str_mv |
Fernández Puchol, María Cecilia Pantano, Maria Nadia Groff, Maria Carla Gil, Rocio Mariel Scaglia, Gustavo Juan Eduardo |
author |
Fernández Puchol, María Cecilia |
author_facet |
Fernández Puchol, María Cecilia Pantano, Maria Nadia Groff, Maria Carla Gil, Rocio Mariel Scaglia, Gustavo Juan Eduardo |
author_role |
author |
author2 |
Pantano, Maria Nadia Groff, Maria Carla Gil, Rocio Mariel Scaglia, Gustavo Juan Eduardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
NONLINEAR SYSTEM FOURIER SERIES OPTIMAL CONTROL EVOLUTIONARY ALGORITHMS BIOETHANOL PRODUCTION |
topic |
NONLINEAR SYSTEM FOURIER SERIES OPTIMAL CONTROL EVOLUTIONARY ALGORITHMS BIOETHANOL PRODUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper develops a dynamic optimization methodology based on direct numerical methods, for the bioethanol fed-batch production from glucose and fructose as a substrate. The mathematical model that governs the process consists of six differential equations and is highly nonlinear. The proposed strategy uses the Fourier trigonometric basis and normalized orthogonal polynomials for substrate feeding rate parameterization. Then, evolutionary algorithms and gradient methods are combined to search parameters that generate the best control action. This parameterization methodology requires a minimum number of parameters to optimize. Also, the continuous and differentiable nature of the optimal profile enables its direct implementation in the physical process, eliminating the necessity for filtering or smoothing it. In addition, they are ideal for bioprocesses, in which it is preferable to avoid abrupt changes in the operating modes of the process to promote cell growth. As a result, using only 3 parameters, a 3.5% increase in ethanol production was achieved, while the reference uses at least 10 parameters and provides a stepped feed profile. The simulations have yielded promising results, making this proposal an alternative with excellent potential for process optimization. Fil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina Fil: Gil, Rocio Mariel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina |
description |
This paper develops a dynamic optimization methodology based on direct numerical methods, for the bioethanol fed-batch production from glucose and fructose as a substrate. The mathematical model that governs the process consists of six differential equations and is highly nonlinear. The proposed strategy uses the Fourier trigonometric basis and normalized orthogonal polynomials for substrate feeding rate parameterization. Then, evolutionary algorithms and gradient methods are combined to search parameters that generate the best control action. This parameterization methodology requires a minimum number of parameters to optimize. Also, the continuous and differentiable nature of the optimal profile enables its direct implementation in the physical process, eliminating the necessity for filtering or smoothing it. In addition, they are ideal for bioprocesses, in which it is preferable to avoid abrupt changes in the operating modes of the process to promote cell growth. As a result, using only 3 parameters, a 3.5% increase in ethanol production was achieved, while the reference uses at least 10 parameters and provides a stepped feed profile. The simulations have yielded promising results, making this proposal an alternative with excellent potential for process optimization. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240279 Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Groff, Maria Carla; Gil, Rocio Mariel; Scaglia, Gustavo Juan Eduardo; Bioethanol production optimization by direct numerical methods and evolutionary algorithms; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 259-265 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240279 |
identifier_str_mv |
Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Groff, Maria Carla; Gil, Rocio Mariel; Scaglia, Gustavo Juan Eduardo; Bioethanol production optimization by direct numerical methods and evolutionary algorithms; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 259-265 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8307 info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2024.10431425 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083491636183040 |
score |
13.22299 |