Cylinder transition amplitudes in pure AdS3 gravity

Autores
Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.
Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kim, Jayme. Montclair State University.; Estados Unidos
Fil: Porrati, Massimo. University of New York. Center for Cosmology and Particle Physics; Estados Unidos
Materia
BLACK HOLES
MODELS OF QUANTUM GRAVITY
SOLITONS MONOPOLES AND INSTANTONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146010

id CONICETDig_6ce249fed8ee954ec967eaf6e7fc9530
oai_identifier_str oai:ri.conicet.gov.ar:11336/146010
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cylinder transition amplitudes in pure AdS3 gravityGarbarz, Alan NicolásKim, JaymePorrati, MassimoBLACK HOLESMODELS OF QUANTUM GRAVITYSOLITONS MONOPOLES AND INSTANTONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Kim, Jayme. Montclair State University.; Estados UnidosFil: Porrati, Massimo. University of New York. Center for Cosmology and Particle Physics; Estados UnidosSpringer2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146010Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo; Cylinder transition amplitudes in pure AdS3 gravity; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-201126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2020)147info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:03Zoai:ri.conicet.gov.ar:11336/146010instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:03.418CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cylinder transition amplitudes in pure AdS3 gravity
title Cylinder transition amplitudes in pure AdS3 gravity
spellingShingle Cylinder transition amplitudes in pure AdS3 gravity
Garbarz, Alan Nicolás
BLACK HOLES
MODELS OF QUANTUM GRAVITY
SOLITONS MONOPOLES AND INSTANTONS
title_short Cylinder transition amplitudes in pure AdS3 gravity
title_full Cylinder transition amplitudes in pure AdS3 gravity
title_fullStr Cylinder transition amplitudes in pure AdS3 gravity
title_full_unstemmed Cylinder transition amplitudes in pure AdS3 gravity
title_sort Cylinder transition amplitudes in pure AdS3 gravity
dc.creator.none.fl_str_mv Garbarz, Alan Nicolás
Kim, Jayme
Porrati, Massimo
author Garbarz, Alan Nicolás
author_facet Garbarz, Alan Nicolás
Kim, Jayme
Porrati, Massimo
author_role author
author2 Kim, Jayme
Porrati, Massimo
author2_role author
author
dc.subject.none.fl_str_mv BLACK HOLES
MODELS OF QUANTUM GRAVITY
SOLITONS MONOPOLES AND INSTANTONS
topic BLACK HOLES
MODELS OF QUANTUM GRAVITY
SOLITONS MONOPOLES AND INSTANTONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.
Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kim, Jayme. Montclair State University.; Estados Unidos
Fil: Porrati, Massimo. University of New York. Center for Cosmology and Particle Physics; Estados Unidos
description A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146010
Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo; Cylinder transition amplitudes in pure AdS3 gravity; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-20
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146010
identifier_str_mv Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo; Cylinder transition amplitudes in pure AdS3 gravity; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-20
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2020)147
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614084140466176
score 13.070432