Cylinder transition amplitudes in pure AdS3 gravity
- Autores
- Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.
Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kim, Jayme. Montclair State University.; Estados Unidos
Fil: Porrati, Massimo. University of New York. Center for Cosmology and Particle Physics; Estados Unidos - Materia
-
BLACK HOLES
MODELS OF QUANTUM GRAVITY
SOLITONS MONOPOLES AND INSTANTONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146010
Ver los metadatos del registro completo
id |
CONICETDig_6ce249fed8ee954ec967eaf6e7fc9530 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146010 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cylinder transition amplitudes in pure AdS3 gravityGarbarz, Alan NicolásKim, JaymePorrati, MassimoBLACK HOLESMODELS OF QUANTUM GRAVITYSOLITONS MONOPOLES AND INSTANTONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent.Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Kim, Jayme. Montclair State University.; Estados UnidosFil: Porrati, Massimo. University of New York. Center for Cosmology and Particle Physics; Estados UnidosSpringer2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146010Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo; Cylinder transition amplitudes in pure AdS3 gravity; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-201126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2020)147info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:03Zoai:ri.conicet.gov.ar:11336/146010instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:03.418CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cylinder transition amplitudes in pure AdS3 gravity |
title |
Cylinder transition amplitudes in pure AdS3 gravity |
spellingShingle |
Cylinder transition amplitudes in pure AdS3 gravity Garbarz, Alan Nicolás BLACK HOLES MODELS OF QUANTUM GRAVITY SOLITONS MONOPOLES AND INSTANTONS |
title_short |
Cylinder transition amplitudes in pure AdS3 gravity |
title_full |
Cylinder transition amplitudes in pure AdS3 gravity |
title_fullStr |
Cylinder transition amplitudes in pure AdS3 gravity |
title_full_unstemmed |
Cylinder transition amplitudes in pure AdS3 gravity |
title_sort |
Cylinder transition amplitudes in pure AdS3 gravity |
dc.creator.none.fl_str_mv |
Garbarz, Alan Nicolás Kim, Jayme Porrati, Massimo |
author |
Garbarz, Alan Nicolás |
author_facet |
Garbarz, Alan Nicolás Kim, Jayme Porrati, Massimo |
author_role |
author |
author2 |
Kim, Jayme Porrati, Massimo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BLACK HOLES MODELS OF QUANTUM GRAVITY SOLITONS MONOPOLES AND INSTANTONS |
topic |
BLACK HOLES MODELS OF QUANTUM GRAVITY SOLITONS MONOPOLES AND INSTANTONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent. Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Kim, Jayme. Montclair State University.; Estados Unidos Fil: Porrati, Massimo. University of New York. Center for Cosmology and Particle Physics; Estados Unidos |
description |
A spacelike surface with cylinder topology can be described by various sets of canonical variables within pure AdS3 gravity. Each is made of one real coordinate and one real momentum. The Hamiltonian can be either H = 0 or it can be nonzero and we display the canonical transformations that map one into the other, in two relevant cases. In a choice of canonical coordinates, one of them is the cylinder aspect q, which evolves nontrivially in time. The time dependence of the aspect is an analytic function of time t and an “angular momentum” J. By analytic continuation in both t and J we obtain a Euclidean evolution that can be described geometrically as the motion of a cylinder inside the region of the 3D hyperbolic space bounded by two “domes” (i.e. half spheres), which is topologically a solid torus. We find that for a given J the Euclidean evolution cannot connect an initial aspect to an arbitrary final aspect; moreover, there are infinitely many Euclidean trajectories that connect any two allowed initial and final aspects. We compute the transition amplitude in two independent ways; first by solving exactly the time-dependent Schrödinger equation, then by summing in a sensible way all the saddle contributions, and we discuss why both approaches are mutually consistent. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146010 Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo; Cylinder transition amplitudes in pure AdS3 gravity; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-20 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146010 |
identifier_str_mv |
Garbarz, Alan Nicolás; Kim, Jayme; Porrati, Massimo; Cylinder transition amplitudes in pure AdS3 gravity; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-20 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2020)147 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614084140466176 |
score |
13.070432 |