Reflections on the q-Fourier transform and the q-Gaussian function

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The standard q-Fourier Transform (qFT) of a constant diverges, which begs for a better treatment. In addition, Hilhorst has conclusively proved that the ordinary qFT is not of a one-to-one character for an infinite set of functions [H.J. Hilhorst, J. Stat. Mech. (2010) P10023]. Generalizing the ordinary qFT analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307], we appeal here to a complex q-Fourier transform, and show that the problems above mentioned are overcome.
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Materia
q-Fourier transform
Tempered ultradistributions
Complex-plane generalization
One-to-one character
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23412

id CONICETDig_6ce19953976edaa875ebf507701e0ac5
oai_identifier_str oai:ri.conicet.gov.ar:11336/23412
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reflections on the q-Fourier transform and the q-Gaussian functionPlastino, Ángel LuisRocca, Mario Carlosq-Fourier transformTempered ultradistributionsComplex-plane generalizationOne-to-one characterhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The standard q-Fourier Transform (qFT) of a constant diverges, which begs for a better treatment. In addition, Hilhorst has conclusively proved that the ordinary qFT is not of a one-to-one character for an infinite set of functions [H.J. Hilhorst, J. Stat. Mech. (2010) P10023]. Generalizing the ordinary qFT analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307], we appeal here to a complex q-Fourier transform, and show that the problems above mentioned are overcome.Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaElsevier Science2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23412Plastino, Ángel Luis; Rocca, Mario Carlos; Reflections on the q-Fourier transform and the q-Gaussian function; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 18; 5-2013; 3952-39610378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003609info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.04.047info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:48Zoai:ri.conicet.gov.ar:11336/23412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:49.207CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reflections on the q-Fourier transform and the q-Gaussian function
title Reflections on the q-Fourier transform and the q-Gaussian function
spellingShingle Reflections on the q-Fourier transform and the q-Gaussian function
Plastino, Ángel Luis
q-Fourier transform
Tempered ultradistributions
Complex-plane generalization
One-to-one character
title_short Reflections on the q-Fourier transform and the q-Gaussian function
title_full Reflections on the q-Fourier transform and the q-Gaussian function
title_fullStr Reflections on the q-Fourier transform and the q-Gaussian function
title_full_unstemmed Reflections on the q-Fourier transform and the q-Gaussian function
title_sort Reflections on the q-Fourier transform and the q-Gaussian function
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv q-Fourier transform
Tempered ultradistributions
Complex-plane generalization
One-to-one character
topic q-Fourier transform
Tempered ultradistributions
Complex-plane generalization
One-to-one character
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The standard q-Fourier Transform (qFT) of a constant diverges, which begs for a better treatment. In addition, Hilhorst has conclusively proved that the ordinary qFT is not of a one-to-one character for an infinite set of functions [H.J. Hilhorst, J. Stat. Mech. (2010) P10023]. Generalizing the ordinary qFT analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307], we appeal here to a complex q-Fourier transform, and show that the problems above mentioned are overcome.
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
description The standard q-Fourier Transform (qFT) of a constant diverges, which begs for a better treatment. In addition, Hilhorst has conclusively proved that the ordinary qFT is not of a one-to-one character for an infinite set of functions [H.J. Hilhorst, J. Stat. Mech. (2010) P10023]. Generalizing the ordinary qFT analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307], we appeal here to a complex q-Fourier transform, and show that the problems above mentioned are overcome.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23412
Plastino, Ángel Luis; Rocca, Mario Carlos; Reflections on the q-Fourier transform and the q-Gaussian function; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 18; 5-2013; 3952-3961
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23412
identifier_str_mv Plastino, Ángel Luis; Rocca, Mario Carlos; Reflections on the q-Fourier transform and the q-Gaussian function; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 18; 5-2013; 3952-3961
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003609
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.04.047
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614523006222336
score 13.070432