Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study

Autores
Aon, Miguel Antonio; Stanley, Brian Alan; Sivakumaran, Vidhya; Kembro, Jackelyn Melissa; O'Rourke, Brian; Paolocci, Nazareno; Cortassa, Sonia
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The net emission of hydrogen peroxide (H2O2) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H2O2 emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H2O2 emission as a percentage of the total O2 consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H2O2 emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H2O2 overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H2O2 emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H2O2 emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.
Fil: Aon, Miguel Antonio. University Johns Hopkins; Estados Unidos
Fil: Stanley, Brian Alan. University Johns Hopkins; Estados Unidos
Fil: Sivakumaran, Vidhya. University Johns Hopkins; Estados Unidos
Fil: Kembro, Jackelyn Melissa. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: O'Rourke, Brian. University Johns Hopkins; Estados Unidos
Fil: Paolocci, Nazareno. University Johns Hopkins; Estados Unidos
Fil: Cortassa, Sonia. University Johns Hopkins; Estados Unidos
Materia
GLUTATHIONE SYSTEM
THIOREDOXIN SYSTEM
ROS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42623

id CONICETDig_6cad418eeaa8f206ea24f9ead4d5a51d
oai_identifier_str oai:ri.conicet.gov.ar:11336/42623
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational studyAon, Miguel AntonioStanley, Brian AlanSivakumaran, VidhyaKembro, Jackelyn MelissaO'Rourke, BrianPaolocci, NazarenoCortassa, SoniaGLUTATHIONE SYSTEMTHIOREDOXIN SYSTEMROShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The net emission of hydrogen peroxide (H2O2) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H2O2 emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H2O2 emission as a percentage of the total O2 consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H2O2 emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H2O2 overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H2O2 emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H2O2 emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.Fil: Aon, Miguel Antonio. University Johns Hopkins; Estados UnidosFil: Stanley, Brian Alan. University Johns Hopkins; Estados UnidosFil: Sivakumaran, Vidhya. University Johns Hopkins; Estados UnidosFil: Kembro, Jackelyn Melissa. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: O'Rourke, Brian. University Johns Hopkins; Estados UnidosFil: Paolocci, Nazareno. University Johns Hopkins; Estados UnidosFil: Cortassa, Sonia. University Johns Hopkins; Estados UnidosRockefeller University Press2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42623Aon, Miguel Antonio; Stanley, Brian Alan; Sivakumaran, Vidhya; Kembro, Jackelyn Melissa; O'Rourke, Brian; et al.; Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study; Rockefeller University Press; Journal Of General Physiology; 139; 6; 6-2012; 479-4910022-12951540-7748CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jgp.rupress.org/content/139/6/479info:eu-repo/semantics/altIdentifier/doi/10.1085/jgp.201210772info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:04Zoai:ri.conicet.gov.ar:11336/42623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:04.373CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
title Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
spellingShingle Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
Aon, Miguel Antonio
GLUTATHIONE SYSTEM
THIOREDOXIN SYSTEM
ROS
title_short Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
title_full Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
title_fullStr Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
title_full_unstemmed Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
title_sort Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
dc.creator.none.fl_str_mv Aon, Miguel Antonio
Stanley, Brian Alan
Sivakumaran, Vidhya
Kembro, Jackelyn Melissa
O'Rourke, Brian
Paolocci, Nazareno
Cortassa, Sonia
author Aon, Miguel Antonio
author_facet Aon, Miguel Antonio
Stanley, Brian Alan
Sivakumaran, Vidhya
Kembro, Jackelyn Melissa
O'Rourke, Brian
Paolocci, Nazareno
Cortassa, Sonia
author_role author
author2 Stanley, Brian Alan
Sivakumaran, Vidhya
Kembro, Jackelyn Melissa
O'Rourke, Brian
Paolocci, Nazareno
Cortassa, Sonia
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv GLUTATHIONE SYSTEM
THIOREDOXIN SYSTEM
ROS
topic GLUTATHIONE SYSTEM
THIOREDOXIN SYSTEM
ROS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The net emission of hydrogen peroxide (H2O2) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H2O2 emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H2O2 emission as a percentage of the total O2 consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H2O2 emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H2O2 overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H2O2 emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H2O2 emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.
Fil: Aon, Miguel Antonio. University Johns Hopkins; Estados Unidos
Fil: Stanley, Brian Alan. University Johns Hopkins; Estados Unidos
Fil: Sivakumaran, Vidhya. University Johns Hopkins; Estados Unidos
Fil: Kembro, Jackelyn Melissa. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: O'Rourke, Brian. University Johns Hopkins; Estados Unidos
Fil: Paolocci, Nazareno. University Johns Hopkins; Estados Unidos
Fil: Cortassa, Sonia. University Johns Hopkins; Estados Unidos
description The net emission of hydrogen peroxide (H2O2) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H2O2 emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H2O2 emission as a percentage of the total O2 consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H2O2 emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H2O2 overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H2O2 emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H2O2 emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42623
Aon, Miguel Antonio; Stanley, Brian Alan; Sivakumaran, Vidhya; Kembro, Jackelyn Melissa; O'Rourke, Brian; et al.; Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study; Rockefeller University Press; Journal Of General Physiology; 139; 6; 6-2012; 479-491
0022-1295
1540-7748
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42623
identifier_str_mv Aon, Miguel Antonio; Stanley, Brian Alan; Sivakumaran, Vidhya; Kembro, Jackelyn Melissa; O'Rourke, Brian; et al.; Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study; Rockefeller University Press; Journal Of General Physiology; 139; 6; 6-2012; 479-491
0022-1295
1540-7748
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://jgp.rupress.org/content/139/6/479
info:eu-repo/semantics/altIdentifier/doi/10.1085/jgp.201210772
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Rockefeller University Press
publisher.none.fl_str_mv Rockefeller University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613298554667008
score 13.070432