On the Eigenvalues of some non-Hermitian oscillators

Autores
Fernández, Francisco Marcelo; Garcia, Javier
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a class of one-dimensional non-Hermitian oscillators and discuss the relationship between the real eigenvalues of PT-symmetric oscillators and the resonances obtained by different authors. We also show the relationship between the strong-coupling expansions for the eigenvalues of those oscillators. A comparison of the results of the complex rotation and the Riccati–Padé methods reveals that the optimal rotation angle converts the oscillator into either a PT-symmetric or a Hermitian one. In addition to the real positive eigenvalues, the PT-symmetric oscillators exhibit real positive resonances under different boundary conditions. These can be calculated by means of the straightforward diagonalization method. The Riccati–Padé method yields not only the resonances of the non-Hermitian oscillators but also the eigenvalues of the PT-symmetric ones.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Resonances
Pt-Symmetry
Non-Hermitian
Quantum Mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5051

id CONICETDig_6cac127358f998610e9375f66c008190
oai_identifier_str oai:ri.conicet.gov.ar:11336/5051
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Eigenvalues of some non-Hermitian oscillatorsFernández, Francisco MarceloGarcia, JavierResonancesPt-SymmetryNon-HermitianQuantum Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider a class of one-dimensional non-Hermitian oscillators and discuss the relationship between the real eigenvalues of PT-symmetric oscillators and the resonances obtained by different authors. We also show the relationship between the strong-coupling expansions for the eigenvalues of those oscillators. A comparison of the results of the complex rotation and the Riccati–Padé methods reveals that the optimal rotation angle converts the oscillator into either a PT-symmetric or a Hermitian one. In addition to the real positive eigenvalues, the PT-symmetric oscillators exhibit real positive resonances under different boundary conditions. These can be calculated by means of the straightforward diagonalization method. The Riccati–Padé method yields not only the resonances of the non-Hermitian oscillators but also the eigenvalues of the PT-symmetric ones.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaIOP Publishing2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5051Fernández, Francisco Marcelo; Garcia, Javier; On the Eigenvalues of some non-Hermitian oscillators; IOP Publishing; Journal of Physics A: Mathematical And Theoretical; 46; 19; 4-2013; 195301-1953111751-8113enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/46/19/195301info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/19/195301info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1301.1676info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:23:45Zoai:ri.conicet.gov.ar:11336/5051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:23:46.128CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Eigenvalues of some non-Hermitian oscillators
title On the Eigenvalues of some non-Hermitian oscillators
spellingShingle On the Eigenvalues of some non-Hermitian oscillators
Fernández, Francisco Marcelo
Resonances
Pt-Symmetry
Non-Hermitian
Quantum Mechanics
title_short On the Eigenvalues of some non-Hermitian oscillators
title_full On the Eigenvalues of some non-Hermitian oscillators
title_fullStr On the Eigenvalues of some non-Hermitian oscillators
title_full_unstemmed On the Eigenvalues of some non-Hermitian oscillators
title_sort On the Eigenvalues of some non-Hermitian oscillators
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
Garcia, Javier
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
Garcia, Javier
author_role author
author2 Garcia, Javier
author2_role author
dc.subject.none.fl_str_mv Resonances
Pt-Symmetry
Non-Hermitian
Quantum Mechanics
topic Resonances
Pt-Symmetry
Non-Hermitian
Quantum Mechanics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a class of one-dimensional non-Hermitian oscillators and discuss the relationship between the real eigenvalues of PT-symmetric oscillators and the resonances obtained by different authors. We also show the relationship between the strong-coupling expansions for the eigenvalues of those oscillators. A comparison of the results of the complex rotation and the Riccati–Padé methods reveals that the optimal rotation angle converts the oscillator into either a PT-symmetric or a Hermitian one. In addition to the real positive eigenvalues, the PT-symmetric oscillators exhibit real positive resonances under different boundary conditions. These can be calculated by means of the straightforward diagonalization method. The Riccati–Padé method yields not only the resonances of the non-Hermitian oscillators but also the eigenvalues of the PT-symmetric ones.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
description We consider a class of one-dimensional non-Hermitian oscillators and discuss the relationship between the real eigenvalues of PT-symmetric oscillators and the resonances obtained by different authors. We also show the relationship between the strong-coupling expansions for the eigenvalues of those oscillators. A comparison of the results of the complex rotation and the Riccati–Padé methods reveals that the optimal rotation angle converts the oscillator into either a PT-symmetric or a Hermitian one. In addition to the real positive eigenvalues, the PT-symmetric oscillators exhibit real positive resonances under different boundary conditions. These can be calculated by means of the straightforward diagonalization method. The Riccati–Padé method yields not only the resonances of the non-Hermitian oscillators but also the eigenvalues of the PT-symmetric ones.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5051
Fernández, Francisco Marcelo; Garcia, Javier; On the Eigenvalues of some non-Hermitian oscillators; IOP Publishing; Journal of Physics A: Mathematical And Theoretical; 46; 19; 4-2013; 195301-195311
1751-8113
url http://hdl.handle.net/11336/5051
identifier_str_mv Fernández, Francisco Marcelo; Garcia, Javier; On the Eigenvalues of some non-Hermitian oscillators; IOP Publishing; Journal of Physics A: Mathematical And Theoretical; 46; 19; 4-2013; 195301-195311
1751-8113
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/46/19/195301
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/19/195301
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1301.1676
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606585511772160
score 13.001348