Fitness voter model: Damped oscillations and anomalous consensus
- Autores
- Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k ≥ 0 , in addition to its + or − opinion state. The evolution of the distribution of k -values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k -values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1 − p the opposite happens. The agent that keeps its opinion (winning agent) increments its k -value by one. We study the dynamics of the system in the entire 0 ≤ p ≤ 1 range and compare with the case p = 1 / 2 , in which opinions are decoupled from the k -values and the dynamics is equivalent to that of the standard voter model. When 0 ≤ p < 1 / 2 , agents with higher k -values are less persuasive, and the system approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N , and it is greatly decreased relative to the linear behavior τ ∼ N found in the standard voter model. When 1 / 2 < p ≤ 1 , agents with higher k -values are more persuasive, and the system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1 / 2 < p < p o ≃ 0.8 , while for p o ≤ p ≤ 1 there are damped oscillations around the coexistence value. The final approach to coexistence is approximately a power law t − b ( p ) in both regimes, where the exponent b increases with p . Also, τ increases respect to the standard voter model, although it still scales linearly with N . The p = 1 case is special, with a relaxation to coexistence that scales as t − 2.73 and a consensus time that scales as τ ∼ N β , with β ≃ 1.45 .
Fil: Woolcock, Anthony. University of Warwick; Reino Unido
Fil: Connaughton, Colm. University of Warwick; Reino Unido. London Mathematical Laboratory; Reino Unido. University of California; Estados Unidos
Fil: Merali, Yasmin. University of Hull; Reino Unido
Fil: Vazquez, Federico. University of Warwick; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
OPINION FORMATION
HETEROGENEOUS VOTER MODEL
STOCHASTIC PROCESS
INTRINSIC FITNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47941
Ver los metadatos del registro completo
| id |
CONICETDig_6ca91ff421a66659785331f77f65e59a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47941 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Fitness voter model: Damped oscillations and anomalous consensusWoolcock, AnthonyConnaughton, ColmMerali, YasminVazquez, FedericoOPINION FORMATIONHETEROGENEOUS VOTER MODELSTOCHASTIC PROCESSINTRINSIC FITNESShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k ≥ 0 , in addition to its + or − opinion state. The evolution of the distribution of k -values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k -values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1 − p the opposite happens. The agent that keeps its opinion (winning agent) increments its k -value by one. We study the dynamics of the system in the entire 0 ≤ p ≤ 1 range and compare with the case p = 1 / 2 , in which opinions are decoupled from the k -values and the dynamics is equivalent to that of the standard voter model. When 0 ≤ p < 1 / 2 , agents with higher k -values are less persuasive, and the system approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N , and it is greatly decreased relative to the linear behavior τ ∼ N found in the standard voter model. When 1 / 2 < p ≤ 1 , agents with higher k -values are more persuasive, and the system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1 / 2 < p < p o ≃ 0.8 , while for p o ≤ p ≤ 1 there are damped oscillations around the coexistence value. The final approach to coexistence is approximately a power law t − b ( p ) in both regimes, where the exponent b increases with p . Also, τ increases respect to the standard voter model, although it still scales linearly with N . The p = 1 case is special, with a relaxation to coexistence that scales as t − 2.73 and a consensus time that scales as τ ∼ N β , with β ≃ 1.45 .Fil: Woolcock, Anthony. University of Warwick; Reino UnidoFil: Connaughton, Colm. University of Warwick; Reino Unido. London Mathematical Laboratory; Reino Unido. University of California; Estados UnidosFil: Merali, Yasmin. University of Hull; Reino UnidoFil: Vazquez, Federico. University of Warwick; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaAmerican Physical Society2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47941Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico; Fitness voter model: Damped oscillations and anomalous consensus; American Physical Society; Physical Review E; 96; 3; 9-2017; 1-142470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.96.032313info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.032313info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:57Zoai:ri.conicet.gov.ar:11336/47941instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:58.247CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Fitness voter model: Damped oscillations and anomalous consensus |
| title |
Fitness voter model: Damped oscillations and anomalous consensus |
| spellingShingle |
Fitness voter model: Damped oscillations and anomalous consensus Woolcock, Anthony OPINION FORMATION HETEROGENEOUS VOTER MODEL STOCHASTIC PROCESS INTRINSIC FITNESS |
| title_short |
Fitness voter model: Damped oscillations and anomalous consensus |
| title_full |
Fitness voter model: Damped oscillations and anomalous consensus |
| title_fullStr |
Fitness voter model: Damped oscillations and anomalous consensus |
| title_full_unstemmed |
Fitness voter model: Damped oscillations and anomalous consensus |
| title_sort |
Fitness voter model: Damped oscillations and anomalous consensus |
| dc.creator.none.fl_str_mv |
Woolcock, Anthony Connaughton, Colm Merali, Yasmin Vazquez, Federico |
| author |
Woolcock, Anthony |
| author_facet |
Woolcock, Anthony Connaughton, Colm Merali, Yasmin Vazquez, Federico |
| author_role |
author |
| author2 |
Connaughton, Colm Merali, Yasmin Vazquez, Federico |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
OPINION FORMATION HETEROGENEOUS VOTER MODEL STOCHASTIC PROCESS INTRINSIC FITNESS |
| topic |
OPINION FORMATION HETEROGENEOUS VOTER MODEL STOCHASTIC PROCESS INTRINSIC FITNESS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k ≥ 0 , in addition to its + or − opinion state. The evolution of the distribution of k -values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k -values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1 − p the opposite happens. The agent that keeps its opinion (winning agent) increments its k -value by one. We study the dynamics of the system in the entire 0 ≤ p ≤ 1 range and compare with the case p = 1 / 2 , in which opinions are decoupled from the k -values and the dynamics is equivalent to that of the standard voter model. When 0 ≤ p < 1 / 2 , agents with higher k -values are less persuasive, and the system approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N , and it is greatly decreased relative to the linear behavior τ ∼ N found in the standard voter model. When 1 / 2 < p ≤ 1 , agents with higher k -values are more persuasive, and the system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1 / 2 < p < p o ≃ 0.8 , while for p o ≤ p ≤ 1 there are damped oscillations around the coexistence value. The final approach to coexistence is approximately a power law t − b ( p ) in both regimes, where the exponent b increases with p . Also, τ increases respect to the standard voter model, although it still scales linearly with N . The p = 1 case is special, with a relaxation to coexistence that scales as t − 2.73 and a consensus time that scales as τ ∼ N β , with β ≃ 1.45 . Fil: Woolcock, Anthony. University of Warwick; Reino Unido Fil: Connaughton, Colm. University of Warwick; Reino Unido. London Mathematical Laboratory; Reino Unido. University of California; Estados Unidos Fil: Merali, Yasmin. University of Hull; Reino Unido Fil: Vazquez, Federico. University of Warwick; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
| description |
We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k ≥ 0 , in addition to its + or − opinion state. The evolution of the distribution of k -values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k -values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1 − p the opposite happens. The agent that keeps its opinion (winning agent) increments its k -value by one. We study the dynamics of the system in the entire 0 ≤ p ≤ 1 range and compare with the case p = 1 / 2 , in which opinions are decoupled from the k -values and the dynamics is equivalent to that of the standard voter model. When 0 ≤ p < 1 / 2 , agents with higher k -values are less persuasive, and the system approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N , and it is greatly decreased relative to the linear behavior τ ∼ N found in the standard voter model. When 1 / 2 < p ≤ 1 , agents with higher k -values are more persuasive, and the system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1 / 2 < p < p o ≃ 0.8 , while for p o ≤ p ≤ 1 there are damped oscillations around the coexistence value. The final approach to coexistence is approximately a power law t − b ( p ) in both regimes, where the exponent b increases with p . Also, τ increases respect to the standard voter model, although it still scales linearly with N . The p = 1 case is special, with a relaxation to coexistence that scales as t − 2.73 and a consensus time that scales as τ ∼ N β , with β ≃ 1.45 . |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47941 Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico; Fitness voter model: Damped oscillations and anomalous consensus; American Physical Society; Physical Review E; 96; 3; 9-2017; 1-14 2470-0045 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/47941 |
| identifier_str_mv |
Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico; Fitness voter model: Damped oscillations and anomalous consensus; American Physical Society; Physical Review E; 96; 3; 9-2017; 1-14 2470-0045 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.96.032313 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.032313 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597160688353280 |
| score |
12.976206 |